如图1-23所示,轻绳的一端系在质量为物体上,另一端系在一个轻质圆环上,圆环套子在粗糙水平杆MN上,现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F、环与杆的摩擦力Ff和环对杆的压力FN的变化情况是:( )
A.F逐渐增大,Ff保持不变, FN逐渐增大
B.F逐渐增大,Ff逐渐增大, FN保持不变
C.F逐渐减小,Ff逐渐增大, FN逐渐减小
D.F逐渐减小,Ff逐渐减小, FN保持不变
如图1-21所示长木板L的一端固定在铰链上,木块放在木板上,开始木板成水平位置.当木板向下转动,θ角逐渐增大的过程中,摩擦力 的大小随θ角变化最有可能的是图1-22中 ( )
如图所示,相距为d的平行金属板A、B竖直放置,在两板之间水平放置一绝缘平板。有一质量m、电荷量q(q>0)的小物块在与金属板A相距l(d>2l)处静止。若某一时刻在金属板A、B间加一电压,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因素为μ,若不计小物块电荷量对电场的影响和碰撞时间。则
(1)小物块与金属板A碰撞前瞬间的速度大小是多少?
|
|
如图(甲)所示,水平放置的平行金属板A、B,两板的中央各有一小孔O1、O2,板间距离为d,开关S接1.当t=0时,在a、b两端加上如图(乙)所示的电压,同时在c、d两端加上如图(丙)所示的电压.此时,一质量为m的带负电微粒P恰好静止于两孔连线的中点处(P、O1、O2在同一竖直线上).重力加速度为g,不计空气阻力.
(1)若在t=时刻将开关S从1扳到2,当ucd=2U0时,求微粒P的加速度大小和方向;
(2)若要使微粒P以最大的动能从A板中的O1小孔射出,问在t=到t=T之间的哪个时刻,把开关S从1扳到2,ucd的周期T至少为多少?
如图所示,A、B是位于竖直平面内、半径R=0.5m的圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103N/C.今有一质量为m=0.1kg、带电荷量+q=8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10m/s2,求:
(1)小滑块第一次经过圆弧形轨道最低点B时对B点的压力.
(2)小滑块在水平轨道上通过的总路程.
|
|