已知地球赤道上的物体随地球自转的线速度大小为,向心加速度大小为,近地卫星速度大小为,向心加速度大小为,地球同步卫星线速度大小为,向心加速度大小为,设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍,则以下结论正确的是
A. B. C. D.
一水平抛出的小球落到一倾角为的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示。小球在竖直方向下落的距离与在水平方向通过的距离之比为
A.
B.
C.
D.
一小球自由下落,与地面发生碰撞后以原速率反弹。若从释放小球开始计时,不计小球与地面发生碰撞的时间及空气阻力。则下图中能正确描述小球位移s、速度v、动能EK、机械能E与时间t关系的是
L型木板P(上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q相连,如图所示。若P、Q一起沿斜面匀速下滑,不计空气阻力。则木板P的受力个数为
A.3
B.4
C.5
D.6
如图所示,水平放置的汽缸内壁光滑,活塞厚度不计,在A、B两处设有限制装置,使活塞只能在A、B之间运动,B左面汽缸的容积为V0,A、B之间的容积为0.1V0。开始时活塞在B处,缸内气体的压强为0.9p0(p0为大气压强),温度为297K,现缓慢加热汽缸内气体,直至399.3K。求:
(1)活塞刚离开B处时的温度TB;
(2)缸内气体最后的压强p;
(3)在右图中画出整个过程的p-V图线。
某压力锅结构如图所示。盖好密封锅盖,将压力阀套在出气孔上,给压力锅加热,当锅内气体压强达到一定值时,气体就把压力阀顶起。假定在压力阀被顶起时,停止加热。
(1)若此时锅内气体的体积为V,摩尔体积为V0,阿伏加德罗常数为NA,写出锅内气体分子数的估算表达式。
(2)假定在一次放气过程中,锅内气体对压力阀及外界做功1 J,并向外界释放了2 J的热量。锅内原有气体的内能如何变化?变化了多少?
(3)已知大气压强P随海拔高度H的变化满足P=P0(1-αH),其中常数α>0。结合气体定律定性分析在不同的海拔高度使用压力锅,当压力阀被顶起时锅内气体的温度有何不同。