如图所示,劲度系数为k的轻质弹簧一端固定,另一端与物块拴接,物块保持静止放在光滑水平面上。现用外力缓慢拉动物块,若外力所做的功为W,则物块移动的距离为 。
以初速度v0竖直向上抛出一个质量为m的小球,小球运动过程中所受阻力f的大小不变,上升的最大高度为h,则抛出过程中,人手对小球做的功为(设急速抛出):( )
A. B.mgh C. D.mgh+fh
如图所示,一个物体以速度v0冲向竖直墙壁,墙壁和物体间的弹簧被物体压缩,在此过程中以下说法正确的是( )
A.物体对弹簧做的功与弹簧的压缩量成正比
B.物体向墙壁运动相同的位移,弹力做的功不相等
C.弹力做正功,弹簧的弹性势能减小
D.弹簧的弹力做负功,弹性势能增加
在“探究弹性势能的表达式”的活动中,为计算弹簧弹力所做的功,把拉伸弹簧的过程分为很多小段,拉力在每小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做“微元法”.下面几个实例中应用到这一思想方法的是( )
A.由加速度的定义,当非常小,就可以表示物体在t时刻的瞬时加速度
B.在探究加速度、力和质量三者之间关系时,先保持质量不变研究加速度与力的关系,再保持力不变研究加速度与质量的关系
C.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加
D.在不需要考虑物体本身的大小和形状时,用有质量的点来代替物体,即质点
质量为m的小球被系在轻绳的一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的拉力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( )
A. B. C. D.
汽车以恒定功率 、初速度冲上倾角一定的斜坡时,汽车受到的阻力恒定不变,则汽车上坡过程的图可能是下图中( )