(14分)如图所示,A、B两个矩形木块用轻弹簧相接静止在水平地面上,弹簧的劲度系数为k,木块A和木块B的质量均为m。
(1)若用力将木块A缓慢地竖直向上提起,木块A向上提起多大高度时,木块B将离开水平地面.
(2)若弹簧的劲度系数k是未知的,将一物体C从A的正上方某位置处无初速释放,C与A相碰后立即粘在一起(不再分离)向下运动,它们到达最低点后又向上运动.已知C的质量为m时,把它从距A高为H处释放,则最终能使B刚好离开地面.若C的质量为,要使B始终不离开地面,则释放时,C距A的高度h不能超过多少?
(14分)如图是建筑工地上常用的一种“深穴打夯机”示意图,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,夯杆在自身重力作用下,落回深坑,夯实坑底.然后两个滚轮再次压紧,夯杆被提上来,如此周而复始.已知两个滚轮边缘的线速度恒为v=4m/s,滚轮对夯杆的正压力FN=2×104N,滚轮与夯杆间的动摩擦因数为0.3,夯杆质量m=1×103kg,坑深h=6.4m,假定在打夯的过程中坑的深度变化不大,取g=10m/s2.求:
(1)在每个打夯周期中,电动机对夯杆所做的功;
(2)每个打夯周期中滚轮与夯杆间因摩擦产生的热量;
(3)打夯周期。
(12分)如图所示,长为2米的不可伸长的轻绳一端系于固定点O,另一端系一质量m=100g的小球,将小球从O点正下方h=0.4m 处水平向右抛出,经一段时间绳被拉直,拉直绳时绳与竖直方向的夹角α=53˚,以后,小球以O为悬点在竖直平面内摆动,试求在绳被拉直的过程中,沿绳方向的合力给小球的冲量。(cos53˚=0.6,sin53˚=0.8)
(8分)某研究性学习小组用如图(a)所示装置验证机械能守恒定律.让一个摆球由静止开始从A位置摆到B位置,若不考虑空气阻力,小球的机械能应该守恒,即.直接测量摆球到达B点的速度v比较困难.现让小球在B点处脱离悬线做平抛运动,利用平抛的特性来间接地测出v。
如图(a)中,悬点正下方P点处放有水平放置炽热的电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出作平抛运动.在地面上放上白纸,上面覆盖着复写纸,当小球落在复写纸上时,会在下面白纸上留下痕迹.
用重锤线确定出A、B点的投影点N、M.重复实验10次(小球每一次都从同一点由静止释放),球的落点痕迹如图(b)所示,图中米尺水平放置,零刻度线与M点对齐.用米尺量出AN的高度h1、BM的高度h2,算出A、B两点的竖直距离,再量出M、C之间的距离x,即可验证机械能守恒定律.已知重力加速度为g,小球的质量为m。
(1)根据图(b)可以确定小球平抛时的水平射程为 cm.
(2)用题中所给字母表示出小球平抛时的初速度v0 = .
(3)用测出的物理量表示出小球从A到B过程中,重力势能的减少量ΔEP = ,动能的增加量ΔEK= .
(8分)①在“探究恒力做功与动能改变的关系”实验中,某同学采用如图甲所示的装置的实验方案,他想用钩码的重力表示小车受到的合外力,为了减小这种做法带来的实验误差,你认为在实验中应该采取的两项必要措施是:
a.______ _ ___;
b. _ _ ___.
②如图乙所示是某次实验中得到的一条纸带,其中A、B、C、D、E、F是计数点,相邻计数点间的时间间隔为T.距离如图乙.则打C点时小车的速度表达式为(用题中所给物理量表示) ;要验证合外力的功与动能变化间的关系,除位移、速度外,还要测出的物理量有 .
我国的嫦娥登月计划正在紧锣密鼓的实施当中,假设登月舱的质量为m,接近月球时的速度为v0,而安全落在月球上的速度为v,为了保证其安全落在月球上,利用其向月球喷出气流达到减速的目的,经t时间顺利落在月球上。不考虑登月舱因喷出气体质量的变化和其他阻力,月球表面及附近的重力加速度为g/6(g为地球表面的重力加速度),并且假设舱体的运动总是指向月球球心的。那么登月舱喷出的气体对舱体作用力的冲量为( )