1966年曾在地球的上空完成了以牛顿第二定律为基础的测定质量的实验。实验时,用宇宙飞船(质量为m)去接触正在轨道上运行的火箭(质量为mx,发动机已熄火),如图所示。接触以后,开动飞船尾部的推进器,使飞船和火箭共同加速,推进器的平均推力为F,开动时间Δt,测出飞船和火箭的速度变化是Δv,下列说法正确的是
A.火箭质量应为
B.宇宙飞船的质量m应为
C.推力F越大,就越大,且与F成正比
D.推力F通过飞船传递给火箭,所以飞船对火箭的弹力大小应为F
投飞镖是深受人们喜爱的一种娱乐活动。某运动员将一枚飞镖从高于靶心的位置水平投向竖直悬挂的靶盘,结果飞镖打在靶心的正下方,如图3所示。假设飞镖运动过程中所受空气阻力不计,在其他条件不变的情况下,为使飞镖命中靶心,该运动员在下次投掷时应该采取的正确方法是
A.适当增大飞镖投出时的初速度 B.适当减小飞镖投出时的高度
C.到离靶盘稍远些的地方投飞镖 D.换用质量稍大些的飞镖
一只重为G的蜗牛沿着藤蔓缓慢爬行,如图2所示。若藤蔓的倾角为α ,则藤蔓对蜗牛的作用力为
A. B.
C. D.G
学习物理不仅要掌握物理知识,还要领悟并掌握处理物理问题的思想方法。在图所示的几个实验中,研究物理问题的思想方法相同的是
A.甲、乙 B.乙、丙 C.甲、丙 D.丙、丁
如图甲所示,水平加速电场的加速电压为U0,在它的右侧有由水平正对放置的平行金属板a、b构成的偏转电场,已知偏转电场的板长L=0.10 m,板间距离d=5.0×10-2 m,两板间接有如图15乙所示的随时间变化的电压U,且a板电势高于b板电势。在金属板右侧存在有界的匀强磁场,磁场的左边界为与金属板右侧重合的竖直平面MN,MN右侧的磁场范围足够大,磁感应强度B=5.0×10-3T,方向与偏转电场正交向里(垂直纸面向里)。质量和电荷量都相同的带正电的粒子从静止开始经过电压U0=50V的加速电场后,连续沿两金属板间的中线OO′方向射入偏转电场中,中线OO′与磁场边界MN垂直。已知带电粒子的比荷=1.0×108 C/kg,不计粒子所受的重力和粒子间的相互作用力,忽略偏转电场两板间电场的边缘效应,在每个粒子通过偏转电场区域的极短时间内,偏转电场可视作恒定不变。
1.求t=0时刻射入偏转电场的粒子在磁场边界上的入射点和出射点间的距离;
2.求粒子进入磁场时的最大速度;
3.对于所有进入磁场中的粒子,如果要增大粒子在磁场边界上的入射点和出射点间的距离,应该采取哪些措施?试从理论上推理说明。
1879年美国物理学家霍尔在研究载流导体在磁场中受力情况时,发现了一种新的电磁效应:将导体置于磁场中,并沿垂直磁场方向通入电流,则在导体中垂直于电流和磁场的方向会产生一个横向电势差,这种现象后来被称为霍尔效应,这个横向的电势差称为霍尔电势差。
1.如图甲所示,某长方体导体abcda′b′c′d′的高度为h、宽度为l,其中的载流子为自由电子,其电荷量为e,处在与ab b′a′面垂直的匀强磁场中,磁感应强度为B0。在导体中通有垂直于bcc′b′面的电流,若测得通过导体的恒定电流为I,横向霍尔电势差为UH,求此导体中单位体积内自由电子的个数。
2.对于某种确定的导体材料,其单位体积内的载流子数目n和载流子所带电荷量q均为定值,人们将H=定义为该导体材料的霍尔系数。利用霍尔系数H已知的材料可以制成测量磁感应强度的探头,有些探头的体积很小,其正对横截面(相当于图14甲中的ab b′a′面)的面积可以在0.1cm2以下,因此可以用来较精确的测量空间某一位置的磁感应强度。如图14乙所示为一种利用霍尔效应测磁感应强度的仪器,其中的探头装在探杆的前端,且使探头的正对横截面与探杆垂直。这种仪器既可以控制通过探头的恒定电流的大小I,又可以监测出探头所产生的霍尔电势差UH,并自动计算出探头所测位置磁场的磁感应强度的大小,且显示在仪器的显示窗内。
①在利用上述仪器测量磁感应强度的过程中,对探杆的放置方位有何要求;
②要计算出所测位置磁场的磁感应强度,除了要知道H、I、UH外,还需要知道哪个物理量,并用字母表示。推导出用上述这些物理量表示所测位置磁感应强度大小的表达式。