在水平路面上匀速行驶的汽车,从某时刻起,汽车受到的牵引力、阻力随时间t的变化规律如图甲,所示。图乙所示为汽车在t1到时t2这段时间内运动时,其牵引力的功率P与时间t的变化关系,其中正确的是()
如图所示,水平地面粗糙,物块m静止在斜面体M上,轻推一下物块m,物块m恰能沿斜面匀速下滑;若用沿斜面向下的推力作用在物体上,使物块加速下滑,在物块m运动过程中,斜面体始终保持静止,则两种情况下关于斜
面体M,下列说法中不正确的是()
A. 斜面体受到地面的摩擦力大小都为零
B. 斜面体受到地面的摩擦力方向都水平向左
C. 斜面体对地面的压力相等
D.斜面体对物块m的作用力相等
—列从O点沿:c轴正向传播的简谐横波,在t1= 0.50s时刻的波形图如图所示,已知t0= O时刻坐标为X = 4m的质点P刚好第一次通过平衡位置沿y轴正方向运动,则坐标为X= 24 m的质点0开始振动的时刻t2及幵始振动时的运动方向分别是( )
A. t2=0. 25s ,沿y轴负方向
B. t2=O. 75s ,沿y轴负方向
C. t2=1. 50s,沿y轴正方向
D. t2=1. 25s ,沿y轴正方向
质量为1kg的物体放在水平地面上,从t= 0时刻起,物体受到一个方向不变的水平拉力作用,2s后撤去拉力,在前4s内物体的速度一时间图像如图所示,则整个运动过程中该物体()
A. 所受的摩擦力的大小为1N
B. 第Is内受到的拉力大小是2N
C. 在4s末回到出发点
D. 在4s内的平均速度为1.5m/s
如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一初速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R。重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:
1.粘合后的两球从飞出轨道到落地的时间t;
2.小球A冲进轨道时速度v的大小。
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示.已知握绳的手离地面高度为d,手与球之间的绳长为d,重力加速度为g.忽略手的运动半径和空气阻力.
1.求绳断时球的速度大小v1和球落地时的速度大小v2.
2.问绳能承受的最大拉力多大?
3.改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?