如图甲所示,水平地面上有一辆固定有竖直光滑绝缘管的小车,管的底部有一质量m=0.2g、电荷量q=8×10-5C的小球,小球的直径比管的内径略小.在管口所在水平面MN的下方存在着垂直纸面向里、磁感应强度B1=15T的匀强磁场,MN面的上方还存在着竖直向上、场强E=25V/m的匀强电场和垂直纸面向外、磁感应强度B2=5T的匀强磁场.现让小车始终保持v=2m/s的速度匀速向右运动,以带电小球刚经过场的边界PQ为计时的起点,测得小球对管侧壁的弹力FN随高度h变化的关系如图乙所示.g取10m/s2,不计空气阻力,求:
(1)小球刚进入磁场B1时的加速度大小a;
(2)绝缘管的长度L;
(3)小球离开管后再次经过水平面MN时距管口的距离Δx.
.如图甲所示,竖直面MN的左侧空间存在竖直向上的匀强电场(上、下及左侧无边界).一个质量为m、电荷量为q的可视为质点的带正电的小球,以大小为v0的速度垂直于竖直面MN向右做直线运动.小球在t=0时刻通过电场中的P点,为使小球能在以后的运动中竖直向下通过D点(P、D间距为L,且它们的连线垂直于竖直平面MN,D到竖直面MN的距离DQ等于L/π),经过研究,可以在电场所在的空间叠加如图乙所示的随时间周期性变化的、垂直于纸面向里的磁场.(g=10m/s2),求:
(1)场强E的大小;
(2)如果磁感应强度B0为已知量,试推出满足条件t1的表达式;
(3)进一步的研究表明,竖直向下的通过D点的小球将做周期性运动.则当小球运动的周期最大时,求出磁感应强度B0及运动的最大周期T的大小,并在图中定性地画出小球运动一个周期的轨迹.(只需要画出一种可能的情况)
.2008年9月25日中国“神舟七号”宇宙飞船顺利升空,9月27日,中国宇航员首次实现太空出舱.下一步我国将于2015年发射空间站,设该空间站体积很大,宇航员可以在里面进行多项体育活动,一宇航员在站内玩垒球(万有引力可以忽略不计),上半侧为匀强电场,下半侧为匀强磁场,中间为分界面,电场与分界面垂直,磁场垂直纸面向里,电场强度为E=100V/m,宇航员位于电场一侧距分界面为h=3m的P点,PO垂直于分界面,D位于O点右侧,垒球质量为m=0.1kg,带电量为q=-0.05C,该宇航员从P点以初速度v0=10m/s平行于界面投出垒球,要使垒球第一次通过界面就击中D点,且能回到P点.求:
(1)OD之间的距离d.
(2)垒球从抛出第一次回到P点的时间t.(计算结果保留三位有效数字)
某空间区域存在匀强电场和匀强磁场,匀强电场的电场强度为0.5N/C,一带电量为q=+10-3C,质量为m=3×10-5kg的油滴从高5m处落入该区域后,恰好做匀速直线运动(忽略空气阻力的作用),求匀强磁场的磁感应强度的最小值.(重力加速度g=10m/s2)
(2009·皖南八校二模)如图所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B的匀强磁场中,并以速率v1向右匀速运动,从槽口右侧射入的带电微粒的速率是v2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r和周期T分别为 ( )
A., B.,
C., D.,
如图所示,带电粒子以速度v0从a点进入匀强磁场,运动中经过b点,Oa=Ob,若撤去磁场加一个与y轴平行的匀强电场,仍以v0从a点进入电场,粒子仍能通过b点,那么电场强度E与磁感应强度B之比为 ( )
A.v0 B.
C.2v0 D.