为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为,长为L=2.0m的粗糙倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个小物块以初速度,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数(g取l0m/s2,sin37°=0.6,cos37°=0.80)求:
(1)小物块的抛出点和A点的高度差;
(2)为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件。
(3)要使小物块不离开轨道,并从水平轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件.
我国己启动“嫦娥工程”,并于2007年10月24日和2010年10月1日分别将“嫦娥一号”和“嫦娥二号”成功发射,“嫦娥三号”亦有望在2013年落月探测90天,并已给落月点起了一个富有诗意的名字一“广寒宫”。
(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看做匀速圆周运动,请求出月球绕地球运动的轨道半径r.
(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度竖直向上抛出一个小球,经过时间,小球落回抛出点.已知月球半径为,引力常量为G,求出月球的质量M月.
如图所示,横截面半径为r的圆柱体固定在水平地面上。一个质量为m的小滑块P从截面最高点A处以滑下。不计任何摩擦阻力。
(1)试对小滑块P从离开A点至落地的运动过程做出定性分析;
(2)计算小滑块P离开圆柱面时的瞬时速率和落地时的瞬时速率。
如图所示,一光滑斜面固定在水平地面上,质量m=lkg的物体在平行于斜面向上的恒力F作用下,从A点由静止开始运动,到达B点时立即撤去拉力F。此后,物体到达C点时速度为零。每隔0.2s通过传感器测得物体的瞬时速度,下表给出了部分测量数据。
t/s |
0.0 |
0.2 |
0.4 |
… |
2.2 |
2.4 |
… |
v/m·s-1 |
0.0 |
1.0 |
2.0 |
… |
3.3 |
2.1 |
… |
求:(1)恒力F的大小。
(2)撤去外力F的时刻。
图甲是用来探究加速度和力之间关系的实验装置示意图,图乙是其俯视图。两个质量相等的小车,放在光滑水平桌面上,前端各系一条细绳,绳的另一端跨过定滑轮各挂一个小盘,盘里可放砝码。两个小车通过细线用夹子固定,打开夹子,小盘和砝码牵引小车运动,合上夹了,两小车同时停止。
(1)实验中可以通过在小盘中增减砝码来改变小车所受的拉力。为了探究加速度大小和力大小之间的关系,下列做法中正确的是 ( )
A.使小盘和砝码的总质量尽可能与小车质量相等
B.用刻度尺测量两小车通过的位移,通过比较位移司知加速及大小与力大小之间的关系
C.在两小盘内及两小车内分别放置相同质量的砝码进行实验
D.在两小盘内放置不同质量的砝码,在两小车内放置相同质量的砝码进行实验
(2)上述实验中,有四位同学根据实验数据作出如下四幅图像,其中不能说明“质量一定时加速度与合力成正比”或“合力一定时加速度与质罱成反比”的是 ( )
2010年10月11日上午11时32分,在北京航天飞行控制中心的精确控制下,“嫦娥二号”卫星成功实施第三次近月制动,顺利进入轨道高度为100公里的圆形环月工作轨道。已知“嫦娥二号”卫星绕月运动的周期约为118分钟,月球绕地球运动的轨道半径与“嫦娥二号”卫星绕月球运动的轨道半径之比约为220:1。利用上述数据以及日常的天文知识,可估算出地球对“嫦娥二号”卫星的万有引力与月球对它的万有引力的比值约为 ( )
A.2 B.0.2 C.2×10—2 D.2×10-3