正负电子对撞后湮灭生成两个频率相同的光子。已知普朗克常数为h,电子质量为m,电磁波在真空中的速度为c,在折射率为的水中,这种频率的光波长为
A. B. C. D.
核反应堆的工作原理是利用中子轰击重核发生的裂变反应。在众多的裂变反应中,有一种反应方程为,其中X为某种粒子,a为X的个数,则
A.X为中子,a=2 B.X为中子,a=3 C.X为质子,a=2 D.X为质子,a=3
如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里。一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1. 8m,连线OA在竖直方向上,圆弧所对应的圆心角=37°。现有一质量m=3.6×10—4kg、电荷量q=9.0×10—4C的带正电的小球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道。小球离开圆弧轨道后在场中做匀速直线运动。不计空气阻力,sin37°=0.6,cos37°=0.8。求:
(1)匀强电场场强E的大小;
(2)小球刚射入圆弧轨道瞬间对轨道压力的大小。
如图所示,在竖直平面内,一质量为M的木制小球(可视为质点)悬挂于O点,悬线长为L。一质量为m的子弹以水平速度v0射入木球且留在其中,子弹与木球的相互作用时间极短,可忽略不计。
(1)求子弹和木球相互作用结束后的瞬间,它们共同速度的大小;
(2)若子弹射入木球后,它们能在竖直平面内做圆周运动,v0应为多大?
如图所示,甲为操场上一质量不计的竖直滑竿,滑竿上端固定,下端悬空,为了研究学生沿竿下滑的情况,在竿的顶部装有一拉力传感器,可显示竿的顶端所受拉力的大小。现有一学生手握滑竿,从竿的上端由静止开始下滑,下滑5s后这个学生的下滑速度为零,并用手紧握住滑竿保持静止不动。以这个学生开始下滑时刻为计时起点,传感器显示的力随时间变化的情况如图乙所示。求:
(1)该学生下滑过程中的最大速度;
(2)5s内该学生下滑的距离。
如图所示,平行光滑导轨MN和M′N′置于水平面内,导轨间距为l,电阻可以忽略不计。导轨的左端通过电阻忽略不计的导线接一阻值为R的定值电阻。金属棒ab垂直于导轨放置,其阻值也为R。导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。当金属棒ab在导轨上以某一速度向右做匀速滑动时,定值电阻R两端的电压为U。
(1)判断M和M′哪端电势高?
(2)求金属棒ab在导轨上滑动速度的大小。