某实验小组利用数字实验系统探究弹簧振子的运动规律,装置如图所示,水平光滑导轨上的滑块与轻弹簧组成弹簧振子,滑块上固定有传感器的发射器.把弹簧拉长5 cm后由静止释放,滑块开始振动.他们分析位移—时间图象后发现,滑块的运动是简谐运动,滑块从最右端运动到最左端所用时间为1s,则弹簧振子的振动频率为f=
Hz;以释放的瞬时为初始时刻、向右为正方向,则滑块运动的表达式为x= cm.
某同学用如图所示的实验装置探究小车动能变化与合外力对它所做功的关系。图中A为小车,连接在小车后面的纸带穿过打点计时器B的限位孔,它们均置于水平放置的一端带有定滑轮的足够长的木板上,C为弹簧测力计,不计绳与滑轮的摩擦。实验时,先接通电源再松开小车,打点计时器在纸带上打下一系列点。
⑴ 该同学在一条比较理想的纸带上,从点迹清楚的某点开始记为O点,顺次选取5个点,分别测量这5个点到O之间的距离,并计算出它们与O点之间的速度平方差△v2(△v2=v2-v02),填入下表:
点迹 |
s/cm |
△v 2/m2·s-2 |
O |
/ |
/ |
1 |
1.60 |
0.04 |
2 |
3.60 |
0.09 |
3 |
6.00 |
0.15 |
4 |
7.00 |
0.18 |
5 |
9.20 |
0.23 |
请以△v2为纵坐标,以s为横坐标在方格纸中作出△v2—s图象.若测出小车质量为0.2kg,结合图象可求得小车所受合外力的大小为F = N
⑵ 若该同学通过计算发现小车所受合外力小于测力计读数,明显超出实验误差的正常范围.你认为主要原因 是 ,实验操作中改进的措施 。
如图所示,光滑弧形轨道F端与水平传送带光滑连接,轨道上A点到传送带的竖直距离和传送带到地面的距离均为h把一物体放在A点由静止释放,若传送带不动,物体滑上传送带后,从右端B水平飞离,落在地面上P点,B、P的水平距离OP为x,若传送带沿顺时针方向转动,传送带速度为v,则下列说法正确的是
A.两次传送带对物体所做的功一定不等
B.两次传送带对物体所做的功一定相等
C.传送带沿顺时针方向转动时,物体滑上传送带后有可能仍落在地面上的P点
D.传送带沿顺时针方向转动时,物体滑上传 送带后有可能落在P点左边
如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s则
A.左方是A球,碰撞后A、B两球速度大小之比为2∶5
B.左方是A球,碰撞后A、B两球速度大小之比为1∶10
C.右方是A球,碰撞后A、B两球速度大小之比为2∶5
D.右方是A球,碰撞后A、B两球速度大小之比为1∶10
是某同学设计的电容式速度传感器原理图,其中上板为固定极板,下板为待测物体,在两极板间电压恒定的条件下,极板上所带电量Q将随待测物体的上下运动而变化,若Q随时间t的变化关系为Q =(a、b为大于零的常数),其图象如图2所示,那么图3、图4中反映极板间场强大小E和物体速率v随t变化的图线可能是
A、图①和图③ B、图①和图④ C、图②和图③ D、图②和图④
如图所示,竖直放置的固定容器及质量为m的可动光滑活塞P都是不导热的,中间有一导热的固定隔板Q,Q的上下两边盛有温度和体积均相同的同种气体甲和乙,现用外力F将活塞P缓慢向下移动一段距离,则在移动P的过程中
A.外力F对活塞做功,甲的内能不变
B.甲传热给乙,乙的内能增加
C.甲气体与乙气体相比,甲气体在单位时间内与隔板Q碰撞的分子数一定较少
D.甲气体与乙气体相比,甲气体在单位时间内与隔板Q碰撞的分子数一定较多