裂变反应是目前核能利用中常见的反应.以原子核为燃料的反应堆中,当俘获一个慢中子后发生的裂变反应可以有多种方式,其中一种可表示为:
U + n → Xe + Sr+3X
235.0432 1.0087 138.9178 93.9154
反应方程下方的数字是中子及有关原子核的静止质量(以原子质量单位 u 为单位,取1 u 的质量对应的能量为9.3×102 MeV,此裂变反应中
( )
A.释放出的能量是30×102 MeV,X是中子
B.释放出的能量是30 MeV,X是质子
C.释放出的能量是1.8×102 MeV,X是中子
D.释放出的能量是1.8×102 MeV,X是质子
【解析】:据核反应过程中质量数和电荷数守恒可判断X是中子.Δm=(235.0432+1.0087-138.9178-93.9154-3×1.0087) u=0.1926 u,可见该反应释放能量,释放的能量ΔE=0.1926×9.3×102 MeV=1.8×102 MeV.故C正确.
光电效应的实验结论是:对于某种金属
( )
A.无论光强多强,只要光的频率小于极限频率就不能产生光电效应
B.无论光的频率多低,只要光照时间足够长就能产生光电效应
C.超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小
D.超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大
【解析】:根据光电效应规律可知A正确,B、C错误.根据光电效应方程mv=hν-W,频率ν越高,初动能就越大,D正确.
用于火灾报警的离子烟雾传感器如图3所示,在网罩Ⅰ内有电极Ⅱ和Ⅲ,a、b端接电源,Ⅳ是一小块放射性同位素镅241,它能放射出一种很容易使气体电离的粒子.平时,镅放射出的粒子使两个电极间的空气电离,在a、b间形成较强的电流.发生火灾时,烟雾进入网罩内,烟尘颗粒吸收空气中的离子和镅发出的粒子,导致电流发生变化,电路检测到这种变化从而发生警报.下列有关这种报警器的说法正确的是
( )
A.镅241发出的是α粒子,有烟雾时电流增强
B.镅241发出的是α粒子,有烟雾时电流减弱
C.镅241发出的是β粒子,有烟雾时电流增强
D.镅241发出的是β粒子,有烟雾时电流减弱
【解析】:三种射线中α射线的电离本领最强,当有烟尘时,由于烟尘吸收空气中的离子和α粒子,所以电流会减弱.故B正确.
氦氖激光器能产生三种波长的激光,其中两种波长分别为λ1=0.6328 μm,λ2=3.39 μm.已知波长为λ1的激光是氖原子在能级间隔为ΔE1=1.96 eV的两个能级之间跃迁产生的.用ΔE2表示产生波长为λ2的激光所对应的跃迁的能级间隔,则ΔE2的近似值为
( )
A.10.50 eV B.0.98 eV
C.0.53 eV D.0.36 eV
【解析】:由跃迁公式得ΔE1=,ΔE2=,联立可得ΔE2=.ΔE1=0.36 eV,选项D对.
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44∶1,如图所示(图中直径没有按比例画),则 ( )
A.α粒子和反冲核的动量大小相等,方向相反
B.原来放射性元素的原子核电荷数是90
C.反冲核的核电荷数是88
D.α粒子和反冲核的速度之比为1∶88
【解析】:粒子之间相互作用的过程中遵循动量守恒定律,由于原来的原子核是静止的,初动量为零,则末动量也为零,即:α粒子和反冲核的动量大小相等,方向相反,所以A正确.
由于释放的α粒子和反冲核,在垂直于磁场的平面内且在洛伦兹力作用下做匀速圆周运动,所以由牛顿第二定律得:
qvB=m,得R=.
若原来放射性元素的核电荷数为Q,则对α粒子:
R1=.
对反冲核:R2=.
由于p1=p2,所以有:=.
解得:Q=90.
它们的速度大小与质量成反比.所以B、C正确,D错误.
如图甲是α、β、γ三种射线穿透能力的示意图,图乙是工业上利用射线的穿透性来检查金属内部的伤痕的示意图,请问图乙中的检查是利用了哪种射线
( )
A.α射线 B.β射线
C.γ射线 D.三种射线都可以
【解析】:由图甲可知α射线和β射线都不能穿透钢板,γ射线的穿透力最强,可用来检查金属内部的伤痕,为C.