已知万有引力常量G,地球半径R,月球与地球间距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球自转周期T2,地球表面的重力加速度g ;某同学根据以上条件,提出一种估算地球质量M的方法:同步卫星绕地心做圆周运动,由得
(1)请判断上面的结果是否正确,并说明理由。如不正确,请给出正确的解法和结果。
(2)请根据已知条件再提出两种估算地球质量的方法,并解得结果。
如图所示,小球沿光滑的水平面冲上一个光滑的半圆形轨道,已知轨道的半径为R,小球到达轨道的最高点时对轨道的压力大小恰好等于小球的重力。请求出:
(1)小球到达轨道最高点时的速度为多大?
(2)小球落地时距离A点多远?落地时速度多大?
在验证机械能守恒的实验中,所用电源的频率为50 Hz,某同学选择了一条理想的纸带,用刻度尺测量时各计数点位置对应刻度尺上的读数如图所示(图中O是打点计时器打的第一个点,A、B、C、D、E分别是以每打两个点的时间作为计时单位取的计数点)。查得当地的重力加速度g = 9.80 m/s2 ,重锤下落的加速度a = ,若重锤质量为m kg,则重锤从起始下落至B时,减少的重力势能为Ep减 = ,重锤下落到B时,动能为EK = ,得到的结论是
产生误差的主要原因是
以下是一位同学做“探究形变与弹力的关系”的实验。
(1)下列的实验步骤是这位同学准备完成的,请你帮这位同学按操作的先后顺序,用字母排列出来是: 。
A、以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组数据(x,F)对应的点,并用平滑的曲线连结起来。
B、记下弹簧不挂钩码时,其下端在刻度尺上的刻度L0
C、将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一刻度尺
D、依次在弹簧下端挂上1个、2个、3个、4个……钩码,并分别记下钩码静止时,弹簧下端所对应的刻度并记录在表格内,然后取下钩码
E、以弹簧伸长量为自变量,写出弹力与弹簧伸长量的关系式.
F、解释函数表达式中常数的物理意义.
(2)下表是这位同学探究弹力大小与弹簧伸长量之间的关系所测的几组数据:
弹力(F/N) |
0.5 |
1.0 |
1.5 |
2.0 |
2.5 |
弹簧原来长度(L0/cm) |
15 |
15 |
15 |
15 |
15 |
弹簧后来长度(L/cm) |
16.0 |
17.1 |
18.0 |
18.9 |
20 |
弹簧伸长量(x/cm) |
1.0 |
2.1 |
3.0 |
3.9 |
5.0 |
①根据上表的数据在右下图的坐标中作出F-x图线。
②写出曲线的函数表达式。(x用cm作单位):
③函数表达式中常数的物理意义:
将物体以60 J的初动能竖直向上抛出,当它上升至某点P时,动能减少了10 J,机械能损失1.0 J,若空气阻力大小不变,那么物体落回抛出点的动能为( )
A.36 J B.40 J C.48 J D.50 J
游乐场中有一种叫“空中飞椅”的设施,其基本装置是将绳子上端固定在转盘的边缘上,绳子下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋,若将人和座椅看成质点,简化为如图所示的模型,其中P为处于水平面内的转盘,可绕竖直转轴OO′转动,已知绳长为l,质点的质量为m,转盘静止时悬绳与转轴间的距离为d.让转盘由静止逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角为θ,不计空气阻力及绳重,绳子不可伸长,则质点从静止到做匀速圆周运动的过程中,绳子对质点做的功为 ( )
A.
B.
C.
D.