如图所示,质量为m的小球在竖直平面内的光滑圆环轨道上做圆周运动.圆环半径为R,小球经过圆环最高点时刚好不脱离圆环,则其通过最高点时( )
A.小球对圆环的压力大小等于mg
B.小球受到的向心力等于0
C.小球的线速度大小等于
D.小球的向心加速度大小等于g
皮带传送机传送矿石的速度v大小恒定,在轮缘A处矿石和皮带恰好分离,如图所示.若轮子的半径为R,则通过A点的半径OA和竖直方向OB的夹角θ为( )
A.arcsin B.arccot
C.arctan D.arccos
如图所示为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )
A.从动轮做顺时针转动
B.从动轮做逆时针转动
C.从动轮的转速为n
D.从动轮的转速为n
(09·浙江·24)(18分)某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 )
(09·安徽·24)(20分)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位
数字。
试求
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;
(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。
(09·广东文科基础·57) 图7所示是一个玩具陀螺。a、b和c是陀螺上的三个点。当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是 ( )
A.a、b和c三点的线速度大小相等 B.a、b和c三点的角速度相等
C.a、b的角速度比c的大 D.c的线速度比a、b的大