(2011·广东理综·T35)如图19(a)所示,在以O为圆心,内外半径分别为和的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,,一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力。
(1)已知粒子从外圆上以速度射出,求粒子在A点的初速度的大小
(2)若撤去电场,如图19(b),已知粒子从OA延长线与外圆的交点C以速度射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间
(3)在图19(b)中,若粒子从A点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?
(2011·新课标全国卷·T25)如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
(14分)如图所示,足够长的光滑绝缘斜面与水平面的夹角为α(sinα=0.6),放在匀强电场和匀强磁场中,电场强度E=50 V/m,方向水平向左,磁场方向垂直纸面向外.一个电荷量为q=4×10-2C,质量m=0.40 kg的光滑小球,以初速度v0=20 m/s从斜面底端向上滑,然后又下滑,共经过3 s脱离斜面,求磁场的磁感应强度.(g取10 m/s2)
(16分)如图所示, 在水平地面上方有一范围足够大的互相正交的匀强电场和匀强磁场区域.磁场的磁感应强度为B,方向垂直纸面向里.一质量为m、带电荷量为q的带正电微粒在此区域内沿竖直平面(垂直于磁场方向的平面)做速度大小为v的匀速圆周运动,重力加速度为g.
(1)求此区域内电场强度的大小和方向.
(2)若某时刻微粒在场中运动到P点时,速度与水平方向的夹角为60°,且已知P点与水平地面间的距离等于其做圆周运动的半径.求该微粒运动到最高点时与水平地面间的距离.
(3)当带电微粒运动至最高点时,将电场强度的大小变为原来的 (方向不变,且不计电场变化对原磁场的影响),且带电微粒能落至地面,求带电微粒落至地面时的速度大小.
在娱乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论.如图所示,他们将选手简化为质量m=60 kg的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角α=53°,绳的悬挂点O距水面的高度为H=3 m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深.取重力加速度g=10 m/s2,sin 53°=0.8,cos 53°=0.6.
(1)求选手摆到最低点时对绳拉力的大小F;
(2)若绳长l=2 m,选手摆到最高点时松手落入水中.设水对选手的平均浮力f1=800 N,平均阻力f2=700 N,求选手落入水中的深度d.
(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳却认为绳越短,落点距岸边越远.请通过推算说明你的观点.
如下图所示的木板由倾斜部分和水平部分组成,两部分之间由一段圆弧面相连接.在木板的中间有位于竖直面内的光滑圆槽轨道,斜面的倾角为θ.现有10个质量均为m、半径均为r的均匀刚性球,在施加于1号球的水平外力F的作用下均静止,力F与圆槽在同一竖直面内,此时1号球球心距它在水平槽运动时的球心高度差为h.现撤去力F使小球开始运动,直到所有小球均运动到水平槽内.重力加速度为g.求:
(1)水平外力F的大小;
(2)1号球刚运动到水平槽时的速度;
(3)整个运动过程中,2号球对1号球所做的功.