1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能Ekm.
如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B、方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量为M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F、方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.(金属棒、导轨的电阻均不计)求:
(1)EF棒下滑过程中的最大速度.
(2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能?
有一根圆台状匀质合金棒如图甲所示,某同学猜测其电阻的大小与该合金棒的电阻率ρ、长度L和两底面直径d、D有关.他进行了如下实验:
(1)用游标卡尺测量合金棒的两底面直径d、D和长度L.图乙中游标卡尺(游标尺上有20个等分刻度)的读数L=________ cm.
(2)测量该合金棒电阻的实物电路如图丙所示(相关器材的参数已在图中标出).该合金棒的电阻约为几欧姆.图中有一处连接不当的导线是________.(用标注在导线旁的数字表示)
(3)改正电路后,通过实验测得合金棒的电阻R=6.72 Ω.根据电阻定律计算电阻率为ρ、长为L、直径分别为d和D的圆柱状合金棒的电阻分别为Rd=13.3 Ω、RD=3.38 Ω.他发现:在误差允许范围内,电阻R满足R2=Rd·RD,由此推断该圆台状合金棒的电阻R=________.(用ρ、L、d、D表示)
图示为一简单欧姆表原理示意图,其中电流表的满偏电流Ig=300 μA,内阻Rg=100 Ω,可变电阻R的最大阻值为10 kΩ,电池的电动势E=1.5 V,内阻r=0.5 Ω,图中与接线柱A相连的表笔颜色应是________色.按正确使用方法测量电阻Rx的阻值时,指针指在刻度盘的正中央,则Rx=________kΩ.若该欧姆表使用一段时间后,电池电动势变小、内阻变大,但此表仍能调零,按正确使用方法再测上述Rx,其测量结果与原结果相比将________(填“变大”“变小”或 “不变”).
如图所示,两条足够长的平行金属导轨水平放置,导轨的一端接有电阻和开关,导轨光滑且电阻不计,匀强磁场的方向与导轨平面垂直,金属杆ab置于导轨上.当开关S断开时,在杆ab上作用一水平向右的恒力F,使杆ab向右运动进入磁场.一段时间后闭合开关并开始计时,金属杆在运动过程中始终与导轨垂直且接触良好.下列关于金属杆ab的v—t图象不可能的是( )
在图中直角坐标系xOy的一,三象限内有垂直纸面的匀强磁场,磁感应强度大小均为B,方向如图所示.半径为l,圆心角为60°的扇形导线框OPQ从图示位置开始以ω= rad/s的角速度绕O点在xOy平面内沿逆时针方向匀速转动.则在线框转动一周的过程中,线框中感应电动势随时间变化关系大致是下图中的(设沿OPQ的电动势方向为正)( )