如图所示,正方形导线框abcd的质量为m、边长为l,导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为l.已知cd边刚进入磁场时线框恰好做匀速运动.重力加速度为g.
(1)求cd边刚进入磁场时导线框的速度大小;
(2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率;
(3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导线框克服安培力所做的功.
1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能Ekm.
如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B、方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量为M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F、方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.(金属棒、导轨的电阻均不计)求:
(1)EF棒下滑过程中的最大速度.
(2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能?
有一根圆台状匀质合金棒如图甲所示,某同学猜测其电阻的大小与该合金棒的电阻率ρ、长度L和两底面直径d、D有关.他进行了如下实验:
(1)用游标卡尺测量合金棒的两底面直径d、D和长度L.图乙中游标卡尺(游标尺上有20个等分刻度)的读数L=________ cm.
(2)测量该合金棒电阻的实物电路如图丙所示(相关器材的参数已在图中标出).该合金棒的电阻约为几欧姆.图中有一处连接不当的导线是________.(用标注在导线旁的数字表示)
(3)改正电路后,通过实验测得合金棒的电阻R=6.72 Ω.根据电阻定律计算电阻率为ρ、长为L、直径分别为d和D的圆柱状合金棒的电阻分别为Rd=13.3 Ω、RD=3.38 Ω.他发现:在误差允许范围内,电阻R满足R2=Rd·RD,由此推断该圆台状合金棒的电阻R=________.(用ρ、L、d、D表示)
图示为一简单欧姆表原理示意图,其中电流表的满偏电流Ig=300 μA,内阻Rg=100 Ω,可变电阻R的最大阻值为10 kΩ,电池的电动势E=1.5 V,内阻r=0.5 Ω,图中与接线柱A相连的表笔颜色应是________色.按正确使用方法测量电阻Rx的阻值时,指针指在刻度盘的正中央,则Rx=________kΩ.若该欧姆表使用一段时间后,电池电动势变小、内阻变大,但此表仍能调零,按正确使用方法再测上述Rx,其测量结果与原结果相比将________(填“变大”“变小”或 “不变”).
如图所示,两条足够长的平行金属导轨水平放置,导轨的一端接有电阻和开关,导轨光滑且电阻不计,匀强磁场的方向与导轨平面垂直,金属杆ab置于导轨上.当开关S断开时,在杆ab上作用一水平向右的恒力F,使杆ab向右运动进入磁场.一段时间后闭合开关并开始计时,金属杆在运动过程中始终与导轨垂直且接触良好.下列关于金属杆ab的v—t图象不可能的是( )