(15分)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)
(10分)如图所示,半径为R,内径很小的光滑半圆管道竖直放置,质量为m的小球以某一速度进入管内,小球通过最高点P时,对管壁的压力为0.5mg.求:
(1)小球从管口飞出时的速率;
(2)小球落地点到P点的水平距离.
(10分)如图所示,一高度为h=0. 2 m的水平面在A点处与一倾角为θ=30°的斜面连接,一小球以v0=5 m / s的速度在平面上向右运动,求小球从A点运动到地面所需的时间(平面与斜面均光滑,取g=10 m / s2)。
如图是小球做平抛运动的闪光照片,图中每个小方格的边长都是0.54cm.已知闪光频率是30Hz,那么重力加速度g是 m/s²,小球的初速度是 m/s,小球过A点时的速率是 m/s.
如图所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( )
A.该盒子做匀速圆周运动的周期一定小于2π
B.该盒子做匀速圆周运动的周期一定等于2π
C.盒子在最低点时盒子与小球之间的作用力大小可能小于2mg
D.盒子在最低点时盒子与小球之间的作用力大小可能等于2mg
如图所示,半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v0,若v0大小不同,则小球能够上升到的最大高度(距离底部)也不同.下列说法中正确的是 ( )
A.如果v0=,则小球能够上升的最大高度为
B.如果v0=,则小球能够上升的最大高度为
C.如果v0=,则小球能够上升的最大高度为
D.如果v0=,则小球能够上升的最大高度为2R