如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.
(1)求金属棒沿导轨由静止开始下滑时的加速度大小.
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8 W,求该速度的大小.
(3)在上问中,若R=2 Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.
(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)
如图所示,导线全部为裸导线,半径为r的圆内有垂直于平面的匀强磁场,磁感应强度为B,一根长度大于2r的导线MN以速度v在圆环上无摩擦地自左向右匀速滑动,电路的固定电阻为R.其余电阻忽略不计.试求MN从圆环的左端到右端的过程中电阻R上的电流强度的平均值及通过的电荷量.
如图所示,在空间中存在两个相邻的、磁感应强度大小相等、方向相反的有界匀强磁场,其宽度均为L.现将宽度也为L的矩形闭合线圈,从图示位置垂直于磁场方向匀速拉过磁场区域,则在该过程中,能正确反映线圈中所产生的感应电流或其所受的安培力随时间变化的图象是( )
用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直纸面向里的匀强磁场中,如图甲所示.当磁场以10 T/s的变化率增强时,线框中点a、b两点间的电势差是( )
A.Uab=0.1 V B.Uab=-0.1 V
C.Uab=0.2 V D.Uab=-0.2 V
如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴.一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v0向右运动,当运动到关于OO′对称的位置时( )
A.穿过回路的磁通量为零
B.回路中感应电动势大小为2Blv0
C.回路中感应电流的方向为顺时针方向
D.回路中ab边与cd边所受安培力方向相同
在匀强磁场中,有一个接有电容器的导线回路,如图所示,已知电容C=30 μF,回路的长和宽分别为l1=5 cm,l2=8 cm,磁场变化率为5×10-2 T/s,则( )
A.电容器带电荷量为2×10-9 C
B.电容器带电荷量为4×10-9 C
C.电容器带电荷量为6×10-9 C
D.电容器带电荷量为8×10-9 C