如图所示,两个内壁光滑、半径不同的半圆轨道固定于地面,一个小球先后在与球心在同一水平高度的A、B两点由静止开始下滑,通过轨道最低点时
A.A球对轨道的压力小于B球对轨道的压力
B.A球对轨道的压力等于B球对轨道的压力
C.A球的角速度小于B球的角速度
D.A球的向心加速度小于B球的向心加速度
(14分)如图所示,质量为m可看作质点的小球从静止开始沿斜面由A点滑到B点后,进入与斜面圆滑连接的竖直圆弧管道,管道出口为C,圆弧半径R=15cm,AB的竖直高度差h=35cm.在紧靠出口C处,有一水平放置且绕其水平轴线匀速旋转的圆筒(不计筒皮厚度),筒上开有小孔D,筒旋转时,小孔D恰好能经过出口C处.若小球射出C口时,恰好能接着穿过D孔,并且还能再从D孔向上穿出圆筒,小球返回后又先后两次向下穿过D孔而未发生碰撞.不计摩擦和空气阻力,取重力加速度g=10m/s2,问:
(1)小球到达C点的速度vc为多少?
(2)圆筒转动的最大周期T为多少?
(3)在圆筒以最大周期T转动的情况下,要完成上述运动圆筒的半径r必须为多少?
(12分)如图所示,质量分别为mA=3kg、mB=1kg的物块A、B置于足够长的水平面上,F=13N的水平推力作用下,一起由静止开始向右做匀加速运动,已知A、B与水平面间的动摩擦因素分别为μA=0.1、μB=0.2,取g=10m/s2.则
(1)物块A、B一起做匀加速运动的加速度a为多大?
(2)物块A对物块B的作用力FAB为多大?
(3)若物块A、B一起运动的速度v=10m/s时,撤去水平力F,求此后物块B滑行过程中克服摩擦力做的功Wf.
(12分)甲车以加速度a1=3m/s2由静止开始作匀加速直线运动,乙车落后t0=2s钟在同一地点由静止开始,以加速度a2=4m/s2作匀加速直线运动,两车的运动方向相同,求:
(1)在乙车追上甲车之前,两车距离的最大值xm是多少?
(2)乙车出发后经多长时间t可追上甲车?此时它们离开出发点x多远?
(10分)“嫦娥奔月”的过程可以简化为:“嫦娥一号”升空后,绕地球沿椭圆轨道运动,远地点A距地面高为h1,在远地点时的速度为v,然后经过变轨被月球捕获,再经多次变轨,最终在距离月球表面高为h2的轨道上绕月球做匀速圆周运动。
(1)已知地球半径为R1.表面的重力加速度为g0,求“嫦娥一号”在远地点A处的加速度a;
(2)已知月球的质量为M.半径为R2,引力常量为G,求“嫦娥一号”绕月球运动的周期T。
(8分)某兴趣小组为了测一遥控电动小车的功率,进行了如下的实验:
(a)用天平测出电动小车的质量为0.5kg
(b)接通电动小车的电源,使小车在水平桌面上从位移传感器处(O点)开始远离传感器,小车在接通电源时电动机的输出功率保持恒定不变;
(c)小车在运动过程中,接通位移传感器,测量小车与位移传感器之间的距离,每隔0.04s用位移传感器测量小车与传感器之间的距离一次,小车与位移传感器之间的距离分别是OA、OB、OC……
(d)使小车加速运动,达到最大速度一段时间后关闭小车电源,待小车停止运动后再切断传感器的电源,(在运动过程中,小车所受的阻力f恒定不变),通过实验测得的数据如下表:
|
OA |
OB |
OC |
OD |
OE |
OF |
OG |
OH |
OI |
OJ |
OK |
cm |
75.00 |
81.00 |
87.00 |
93.00 |
99.00 |
104.78 |
110.30 |
115.50 |
120.38 |
124.94 |
129.18 |
通过对上述实验数据的分析,可知:
①该电动小车运动的最大速度为_________m/s;(2分)
②小车所受的恒定阻力为_________N;(2分)
③该电动小车的功率为_________W;(2分)
④接通位移传感器之前,小车已经运动了_________s.(2分)