.关于验证机械能守恒定律实验,下面列出一些实验步骤:
A.用天平称出重物和夹子质量
B.在三条纸带中选出较好的一条
C.将纸带穿过打点计时器的限位孔,上端用手提着,下端夹上系住重物的夹子,再把纸带向上拉,让夹子靠近打点计时器,处于静止状态
D.把打点计时器接在学生电源的交流输出端,把输出电压调到6 V(电源不接通)
E. 把打点计时器用铁夹固定放到桌边的铁架台上,使两个限位孔在同一竖直面内
F. 在纸带上选取两个点,进行测量并记录数据,进行计算,得出结论,完成实验报告.
G. 用秒表测出重物下落的时间
H. 接通电源,待计时器打点稳定后释放纸带
I.切断电源,更换纸带,重新进行两次实验
(1)对于本实验以上步骤中,不必要的有______; 正确步骤的合理顺序是 (填写代表字母).
(2)若实验中所用重物的质量m=1 kg.打点纸带如图所示,打点时间间隔为0.02 s,则记录B点时,重物速度vB= ,重物动能Ek= .(g取9.8 m/s2)
(3)根据纸带算出相关各点的速度v,量出下落距离h,则以为纵轴、以h为横轴画出的图象应是图中的 ( )
如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab。导轨的一端连接电阻R,其它电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动。则 ( )
A.随着ab运动速度的增大,其加速度也增大
B.外力F对ab做的功等于电路中产生的电能
C.当ab做匀速运动时,外力F做功的功率等于电路中的电功率
D.无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能
如图所示,光滑水平面MN上放两相同小物块A、B,左端挡板处有一弹射装置P,右端N处与水平传送带理想连接,传送带水平部分长度L=8m,沿逆时针方向以恒定速度v =2m/s匀速转动。物块A、B(大小不计)与传送带间的动摩擦因数。物块A、B质量mA=mB=1kg。开始时A、B静止,A、B间压缩一轻质弹簧,贮有弹性势能Ep=16J。现解除锁定,弹开A、B,弹开后弹簧掉落,对A、B此后的运动没有影响。g=10m/s2。求:
(1)物块B沿传送带向右滑动的最远距离。
(2)物块B从滑上传送带到回到水平面所用的时间。
(3)若物体B返回水平面MN后与被弹射装置P弹回的A在水平面上发生弹性正碰,且A、B碰后互换速度,则弹射装置P至少对A做多少功才能让AB碰后B能从Q端滑出。
质量为100kg的“勇气”号火星车于2004年成功登陆在火星表面。若“勇气”号在离火星表面12m时与降落伞自动脱离,被气囊包裹的“勇气”号下落到地面后又弹跳到18m高处,这样上下碰撞了若干次后,才静止在火星表面上。已知火星的半径为地球半径的0.5倍,质量为地球质量的0.1倍。若“勇气”号第一次碰撞火星地面时,气囊和地面的接触时间为0.7s,其损失的机械能为它与降落伞自动脱离处(即离火星地面12m时)动能的70%,(地球表面的重力加速度g=10m/s2,不考虑火星表面空气阻力)求:
(1)火星表面的重力加速度;
(2)“勇气”号在它与降落伞自动脱离处(即离火星地面12m时)的速度;
(3)“勇气”号和气囊第一次与火星碰撞时所受到的平均冲力。
在光滑水平面上静止放置一长木板B,B的质量为M=2kg,B右端离竖直墙5m,
现有一小物体A,其质量为m=1kg,以v0=6m/s的速度从B的左端水平滑上B,如图所示,A与B间的动摩擦因数,在运动过程中只是B与墙壁碰撞,碰撞时间极短,且碰撞时无能量损失,取g=10m/s2,求:要使A最终不脱离B,木板B的最短长度是多少?
如图所示,水平面上固定着一个半径R=0.4m的 光滑环形轨道,在轨道内放入质量分别是M=0.2kg和m=0.1kg的小球A和 B(均可看成质点),两球间夹一短弹簧。
(1)开始时两球将弹簧压缩(弹簧的长度相对环形轨道半径和周长而言可忽略不计),弹簧弹开后不动,两球沿轨道反向运动一段时间后又相遇,在此过程中,A球转过的角度θ是多少?
(2)如果压缩弹簧在松手前的弹性势能E=1.2J,弹开后小球B在运动过程中受到光滑环轨道的水平侧压力是多大?