两个分别带有电荷量-Q和+3Q的相同金属小球(均可视为点电荷),固定在相距为r的两处,它们间库仑力的大小为F,两小球相互接触后将其固定距离变为,则两球间库仑力的大小为( )
A.F B.F C.F D.12F
如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左以速度v匀速移动距离l. (物体与斜面相对静止),以下说法正确的是( )
A.斜面体对物体做的总功是0
B.重力对物体做的功为mgl
C.摩擦力对物体做的功为μmglcosθ
D.斜面对物体的支持力做功的功率为mgvcosθ
如图所示,均匀光滑球夹在竖直墙和长木板之间静止,长木板的下端为固定转动轴.将长木板从图示位置缓慢地转到水平位置的过程中,小球对竖直墙的压力F1大小和小球对长木板的压力F2大小的变化情况将是( )
A.F1、F2都逐渐减小
B.F1、F2都逐渐增大
C.F1逐渐减小,F2都逐渐增大
D.F1逐渐增大,F2都逐渐减小
如图所示,在光滑的水平桌面内有一直角坐标系xOy,在y轴正半轴与边界直线MN间有一垂直于纸面向外磁感应强度为B的匀强磁场,直线MN平行于y轴,N点在x轴上,在磁场中放置一固定在短绝缘板,其上表面所在的直线过原点O且与x轴正方向成α=30°角,在y轴上的S点左侧正前方处,有一左端固定的绝缘轻质弹簧,弹簧的右端与一个质量为m,带电量为q的带电小球接触(但不栓接),弹簧处于压缩锁定状态,在某时刻解除锁定,带电小球将垂直于y轴从S点射入磁场,垂直打在绝缘板上,并以原速率反向弹回,然后经过直线MN上的P点并垂直于MN向右离开磁场,在x轴上有一点Q,已知NP=4L,NQ=3L,则:
(1)小球带何种电荷?小球从S进入磁场后经多长时间打在绝缘板上?
(2)弹簧解除锁定前的弹性势能是多少?
(3)如果在直线MN的右侧加一方向与桌面平行的匀强电场,小球在电场力的作用下最后在Q点垂直击中x轴,那么,该匀强电场的电场强度是多少?方向如何?
如图所示,宽度L=1.0m的足够长的U形金属框架水平放置,框架处在竖直向上的匀强磁场中,磁感应强度B=1.0T,框架导轨上放一根质量m=0.2kg、电阻R=1.0Ω的金属棒ab,棒ab与导轨间的动摩擦因数μ=0.5,现牵引力F以恒定功率P使棒从静止开始沿导轨运动(ab棒始终与导轨接触良好且垂直),当棒的电阻R产生热量Q=7.0J时获得稳定速度,速度大小为3.0m/s,此过程中通过棒的电量q=4.1C。框架电阻不计,g取10m/s2。
求:
(1)当棒的速度到达稳定时,棒ab所受的安培力的大小和方向。
(2) 牵引力F的恒定功率P为多大?
(3)ab棒从静止到稳定速度的时间多少?
(15分) 如图所示为半径R=0.50m的四分之一圆弧轨道,底端距水平地面的高度h=0.45m。一质量m=1.0kg的小滑块从圆弧轨道顶端A由静止释放,到达轨道底端B点的速度v = 2.0m/s。忽略空气的阻力。取g=10m/s2。
求:
(1)小滑块在圆弧轨道底端B点受到的支持力大小FN;
(2)小滑块由A到B的过程中,克服摩擦力所做的功W;
(3)小滑块落地点与B点的水平距离x。