闭合电路中产生的感应电动势的大小,取决于穿过该回路的 ( )
A.磁通量 B.磁通量的变化量 C.磁通量的变化率 D.磁场的强弱
如图所示,在xOy平面内有一范围足够大的匀强电场,电场强度大小为E,电场方向在图中未画出.在y≤l的区域内有磁感应强度为B的匀强磁场,磁场方向垂直于xOy平面向里.一电荷量为+q、质量为m的粒子,从O点由静止释放,运动到磁场边界P点时的速度刚好为零,P点坐标为(l,l),不计粒子所受重力.
(1)求从O到P的过程中电场力对带电粒子做的功,并判断匀强电场的方向.
(2)若该粒子在O点以沿OP方向、大小的初速度开始运动,并从P点离开磁场,此过程中运动到离过OP的直线最远位置时的加速度大小,则此点离OP直线的距离是多少?
(3)若有另一电荷量为-q、质量为m的粒子能从O点匀速穿出磁场,设,求该粒子离开磁场后到达y轴时的位置坐标.
如图所示,在倾角为θ的斜面上放置一内壁光滑的凹槽A,凹槽A与斜面间的动摩擦因数μ=,槽内紧靠右挡板处有一小物块B,它与凹槽左挡板的距离为d.A、B的质量均为m,斜面足够长.现同时由静止释放A、B,此后B与A挡板每次发生碰撞均交换速度,碰撞时间都极短.已知重力加速度为g.求:
(1)物块B从开始释放到与凹槽A发生第一次碰撞所经过的时间t1.
(2)B与A发生第一次碰撞后,A下滑时的加速度大小aA和发生第二次碰撞前瞬间物块B的速度大小v2.
(3)凹槽A沿斜面下滑的总位移大小x.
如图所示,两根等高光滑的圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开始下滑,到达轨道底端cd时受到轨道的支持力为2mg.整个过程中金属棒与导轨电接触良好,求:
(1)棒到达最低点时的速度大小和通过电阻R的电流.
(2)棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量.
(3)若棒在拉力作用下,从cd开始以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?
(1)下列说法中正确的是 .
A.利用α射线可发现金属制品中的裂纹
B.原子核中,质子间的库仑力能使它自发裂变
C.在温度达到107K时,能与发生聚变,这个反应需要吸收能量
D.一束C60分子通过双缝装置后会出现干涉图样,证明分子也会象光波一样表现出波动性
(2)一光电管的阴极K用截止频率为ν0的金属钠制成,光电管阳极A和阴极K之间的正向电压为U,普朗克常量为h,电子的电荷量为e.用频率为ν的紫外线照射阴极,有光电子逸出,光电子到达阳极的最大动能是 ;若在光电管阳极A和阴极K之间加反向电压,要使光电子都不能到达阳极,反向电压至少为 .
(3)1928年,德国物理学家玻特用α粒子轰击轻金属铍时,发现有一种贯穿能力很强的中性射线.查德威克测出了它的速度不到光速的十分之一,否定了是γ射线的看法,他用这种射线与氢核和氮核分别发生碰撞,求出了这种中性粒子的质量,从而发现了中子.
①请写出α粒子轰击铍核()得到中子的方程式.
②若中子以速度v0与一质量为mN的静止氮核发生碰撞,测得中子反向弹回的速率为v1,氮核碰后的速率为v2,则中子的质量m等于多少?
(1)下列说法中正确的是 .
A.在玻璃幕墙表面镀一定厚度的金属氧化物,利用衍射现象使外面的人在白天看不到幕墙里面的情况
B.紫外线的频率与固体物质分子的固有频率接近,容易引起分子共振,产生内能
C.来回抖动带电的梳子,在空间就会形成变化的电磁场,产生电磁波
D.地面上两北斗卫星导航终端同时发出定位申请信号,在高速运行的卫星上看两信号也一定是同时发出的
(2)蝙蝠在喉内产生超声波通过口或鼻孔发射出来,超声波遇到猎物会反射回来,回波被蝙蝠的耳廓接收,根据回波判断猎物的位置和速度.在洞穴里悬停在空中的蝙蝠对着岩壁发出频率为34kHz的超声波,波速大小为340m/s,则该超声波的波长为 m,接收到的回波频率 (选填“大于”、“等于”或“小于”)发出的频率.
(3)如图所示,一个立方体玻璃砖的边长为a,折射率n=1.5,立方体中心有一个小气泡.为使从立方体外面各个方向都看不到小气泡,必须在每个面上都贴一张纸片,则每张纸片的最小面积为多少?