如图所示,a为带正电的小物块,b是一不带电的绝缘物块,a、b叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F拉b物块,使a、b一起无相对滑动地向左加速运动,在加速运动阶段 ( )
A、a、b一起运动的加速度不变
B、a、b一起运动的加速度增大
C、a、b物块间的摩擦力减小
D、a、b物块间的摩擦力增大
以下说法中不正确的是( )
A.卡文迪许通过扭秤实验,测定了万有引力常量
B.奥斯特通过实验研究,发现了电流周围存在磁场
C.法拉第发现了电磁感应现象
D.牛顿根据理想斜面实验,提出力不是维持物体运动的原因
如图所示,在坐标系xOy中,y轴右侧有一匀强电场;在第二、三象限内有一有界匀强磁场,其上、下边界无限远,右边界为y轴、左边界为平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直纸面向里。一带正电,电量为q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速度方向与x轴的夹角θ=45°,大小为v.粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的倍。粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。忽略重力的影响。求:
(1)粒子经过A点时速度的方向和A点到x轴的距离;
(2)匀强电场的大小和方向;
(3)粒子从第二次离开磁场到再次到达磁场所用的时间。
如图甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0 m,NQ两端连接阻值R=1.0 Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=300。一质量m=0.20 kg,阻值r=0.50 Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60 kg的重物相连。细线与金属导轨平行。金属棒沿导轨向上滑行的速度v与时间t之间的关系如图乙所示,已知金属棒在0~0.3 s内通过的电量是0.3~0.6 s内通过电量的,g=10 m/s2,求:
(1)0~0.3 s内棒通过的位移;
(2)金属棒在0~0.6 s内产生的热量。
(8分)如图所示,水平地面上放置一个质量为m的物体,在与水平方向成θ角、斜向右上方的拉力F的作用下沿水平地面运动。物体与地面间的动摩擦因数为μ,重力加速度为g。求:
(1)若物体在拉力F的作用下能始终沿水平面向右运动,拉力F的大小范围;
(2)已知m=10 kg、μ=0.5,g=10 m/s2,若物体以恒定加速度a=5 m/s2向右做匀加速直线运动,维持这一加速度的拉力F的最小值。
(8分)如图,光滑水平面上有三个物块A、B和C,它们具有相同的质量,且位于同一直线上。开始时,三个物块均静止,先让A以一定速度与B碰撞,碰后它们粘在一起,然后又一起与C碰撞并粘在一起,求前后两次碰撞中系统损失的动能之比。