全球定位系统(GPS)有24颗卫星分布在绕地球的6个轨道上运行,距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6 400 km,则全球定位系统的这些卫星的运行速度约为( )
A.3.1 km/s B.3.9 km/s
C.7.9 km/s D.11.2 km/s
我们在推导第一宇宙速度的公式v=时,需要做一些假设和选择一些理论依据,下列必要的假设和理论依据有( )
A.卫星做半径等于2倍地球半径的匀速圆周运动
B.卫星所受的重力全部作为其所需的向心力
C.卫星所受的万有引力仅有一部分作为其所需的向心力
D.卫星的运转周期必须等于地球的自转周期
如右图所示,水平光滑绝缘轨道MN的左端有一个固定挡板,轨道所在空间存在E=4.0×102 N/C、水平向左的匀强电场.一个质量m=0.10 kg、带电荷量q=5.0×10-5 C的滑块(可视为质点),从轨道上与挡板相距x1=0.20 m的P点由静止释放,滑块在电场力作用下向左做匀加速直线运动.当滑块与挡板碰撞后滑块沿轨道向右做匀减速直线运动,运动到与挡板相距x2=0.10 m的Q点,滑块第一次速度减为零.若滑块在运动过程中,电荷量始终保持不变,求:
(1)滑块沿轨道向左做匀加速直线运动的加速度的大小;
(2)滑块从P点运动到挡板处的过程中,电场力所做的功;
(3)滑块第一次与挡板碰撞过程中损失的机械能.
如右图所示,M、N是竖直放置的两平行金属板,分别带等量异种电荷,两极间产生一个水平向右的匀强电场,场强为E,一质量为m、电荷量为+q的微粒,以初速度v0竖直向上从两极正中间的A点射入匀强电场中,微粒垂直打到N极上的C点,已知AB=BC.不计空气阻力,则可知( )
A.微粒在电场中作类平抛运动
B.微粒打到C点时的速率与射入电场时的速率相等
C.MN板间的电势差为
D.MN板间的电势差为
一个带负电荷q,质量为m的小球,从光滑绝缘的斜面轨道的A点由静止下滑,小球恰能通过半径为R的竖直圆形轨道的最高点B而做圆周运动.现在竖直方向上加如图所示的匀强电场,若仍从A点由静止释放该小球,则( )
A.小球不能过B点
B.小球仍恰好能过B点
C.小球能过B点,且在B点与轨道之间压力不为0
D.以上说法都不对
如下图所示,A板发出的电子经加速后,水平射入水平放置的两平行金属板间,金属板间所加的电压为U,电子最终打在荧光屏P上,关于电子的运动,则下列说法中正确的是( )
A.滑动触头向右移动时,其他不变,则电子打在荧光屏上的位置下降
B.滑动触头向左移动时,其他不变,则电子打在荧光屏上的位置上升
C.电压U增大时,其他不变,则电子打在荧光屏上的速度大小不变
D.电压U增大时,其他不变,则电子从发出到打在荧光屏上的速度变大