是力F的两个分力.若,则下列不可能是F的两个分力的是( )
A. B.
C. D.
如右图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻.导体棒a和b放在导轨上,与导轨垂直并良好接触.斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场.现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止.当a棒运动到磁场的上边界PQ处时,撤去拉力, a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨.当a棒再次滑回到磁场上边界PQ处时,又恰能沿导轨匀速向下运动.已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计.求:
(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度Ia与定值电阻R中的电流强度IR之比;
(2)a棒质量ma;
(3)a棒在磁场中沿导轨向上运动时所受的拉力F.
如图所示,宽度L=0.5 m的光滑金属框架MNPQ固定于水平面内,并处在磁感应强度大小B=0.4 T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m=0.1 kg,电阻可忽略的金属棒ab放置在框架上,并与框架接触良好.以P为坐标原点,PQ方向为x轴正方向建立坐标.金属棒从处以的初速度,沿x轴负方向做的匀减速直线运动,运动中金属棒仅受安培力作用.求:
(1)金属棒ab运动0.5 m,框架产生的焦耳热Q;
(2)框架中aNPb部分的电阻R随金属棒ab的位置x变化的函数关系;
(3)为求金属棒ab沿x轴负方向运动0.4 s过程中通过ab的电荷量q,某同学解法为:先算出经过0.4 s金属棒的运动距离x,以及0.4 s时回路内的电阻R,然后代入求解.指出该同学解法的错误之处,并用正确的方法解出结果.
如图所示,在一倾角为37°的粗糙绝缘斜面上,静止地放置着一个匝数n=10匝的圆形线圈,其总电阻R=3.14 Ω、总质量m=0.4 kg、半径r=0.4 m.如果向下轻推一下此线圈,则它刚好可沿斜面匀速下滑.现在将线圈静止放在斜面上后.在线圈的水平直径以下的区域中,加上垂直斜面方向的,磁感应强度大小按如下图所示规律变化的磁场(提示:通电半圆导线受的安培力与长为直径的直导线通同样大小的电流时受的安培力相等)问:
(1)刚加上磁场时线圈中的感应电流大小I.
(2)从加上磁场开始到线圈刚要运动,线圈中产生的热量Q.(最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cos 37°=0.8,g取)
如右图所示,甲、乙是两个完全相同的闭合正方形导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些.甲、乙线框分别从磁场区域的正上方相同高度处同时由静止释放,穿过磁场后落到地面.下落过程中线框平面始终保持与磁场方向垂直.以下说法正确的是( )
A.落地时甲框的速度比乙框小
B.落地时甲框的速度比乙框大
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲、乙线框中产生热量相同
如右图所示,在光滑的水平面上,一质量为m,半径为r,电阻为R的均匀金属环,以初速度v0向一磁感应强度为B的有界匀强磁场滑去(磁场宽度d>2r).圆环的一半进入磁场历时t秒,这时圆环上产生的焦耳热为Q,则t秒末圆环中感应电流的瞬时功率为( )
A. B.
C. D.