(1)如图1所示为一列沿x轴正方向传播的简谐横波在t时刻的波形图.已知该波的周期为T,a、b、c、d为沿波传播方向上的四个质点,则下列
说法中正确的是______
A.在t+
时,质点c的速度达到最大值
B.在t+2T时,质点d的加速度达到最大值
C.从t时刻起,质点a比质点b先回到平衡位置
D.从t时刻起,在一个周期内,a、b、c、d四个质点所通过的路程均为一个波长
(2)有一玻璃半球,右侧面镀银,光源S就在其对称轴SO上(O为球心),且SO水平,如图2所示.从光源S发出的一束光射到球面上,其中一部分光经球面反射后恰能竖直向上传播,另一部分光折入玻璃半球内,经右侧镀银面第一次反射恰能沿原路返回.若球面半径为R,玻璃折射率为
,求光源S与球心O之间的距离SO为多大?
考点分析:
相关试题推荐
(1)下列说法中正确的是______.
A.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动
B.叶面上的小露珠呈球形是由于液体表面张力的作用
C.液晶显示器是利用了液晶对光具有各向异性的特点
D.当两分子间距离大于平衡位置的间距r
时,分子间的距离越大,分子势能越小
(2)如图所示,在竖直放置的圆柱形容器内用质量为m的活塞密封一部分气体,活塞与容器壁间能无摩擦滑动,容器的横截面积为S,将整个装置放在大气压恒为P
的空气中,开始时气体的温度为T
,活塞与容器底的距离为h
,当气体从外界吸收热量Q后,活塞缓慢上升d后再次平衡,求:
①外界空气的温度是多少?
②在此过程中的密闭气体的内能增加了多少?
查看答案
许多仪器中可利用磁场控制带电粒子的运动轨迹.如图所示的真空环境中,有一半径r=0.05m的圆形区域内存在磁感应强度B=0.2T的匀强磁场,其右侧相距d=0.05m处有一足够大的竖直屏.从S处不断有比荷
=10
8C/kg的带正电粒子以速度v=2×10
6m/s沿SQ方向射出,经过磁场区域后打在屏上.不计粒子重力,求:
(1)粒子在磁场中做圆周运动的轨迹半径;
(2)绕通过P点(P点为SQ与圆的交点)垂直纸面的轴,将该圆形磁场区域逆时针缓慢转动90°的过程中,粒子在屏上能打到的范围.
查看答案
如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF是半径为r=0.4m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放,
(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?
(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.(取g=10m/s
2)
查看答案
现要验证“当合外力一定时,物体运动的加速与其质量成反比”这一物理规律.给定的器材如下:一倾角可以调节的长斜面(如图所示)、小车、计时器、米尺、弹簧秤,还有钩码若干.实验步骤如下(不考虑摩擦力的影响,重力加速度为g),在空格中填入适当的公式.
(1)用弹簧秤测出小车的重力,除以重力加速度g得到小车的质量M
(2)用弹簧秤沿斜面向上拉小车保持静止,测出此时的拉力F.
(3)让小车自斜面上方一固定点A
1从静止开始下滑到斜面底端A
2,记下所用的时间t用米尺测量A
1与A
2之间的距离s,从运动学角度得小车的加速度a=______.
(4)已知A
1与A
2之间的距离s,小车的质量M,在小车中加钩码,所加钩码总质量为m,要保持小车与钩码的合外力F不变,应将 A
1相对于A
2的高度调节为h=______.
(5)多次增加钩码,在小车与钩码的合外力保持不变情况下,利用(1)、(2)和(3)的测量和计算结果,可得钩码总质量m与小车从A
1到A
2时间t的关系式为:m=______.
查看答案
甲、乙、丙、丁四位同学在使用不同精度的游标卡尺和螺旋测微器测量同一个物体的长度时,分别测量的结果如下:
甲同学:使用游标为50分度的卡尺,读数为12.045cm
乙同学:使用游标为10分度的卡尺,读数为12.04cm
丙同学:使用游标为20分度的卡尺,读数为12.045cm
丁同学:使用精度为“0.01mm”的螺旋测微器,读数为12.040mm
从这些实验数据中可以看出读数肯定有错误的是
同学.
查看答案