如图所示,在矩形ABCD内对角线BD以上的区域存在有平行于AD向下的匀强电场,对角线BD以下的区域存在有垂直于纸面的匀强磁场(图中未标出),矩形AD边长L,AB边长为
L.一个质量为m、电荷+q的带电粒子(不计重力)以初速度v
从A点沿AB方向进入电场,在对角线BD的中点P处进入磁场,并从DC边上的Q点垂直于DC离开磁场,试求:
(1)电场强度的大小.
(2)带电粒子经过P点时速度的大小和方向.
(3)磁场的磁感应强度的大小和方向.
考点分析:
相关试题推荐
如图所示的“S”字形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,将轨道固定在竖直平面内,轨道弯曲部分是由两个半径相等的半圆连接而成,圆半径比细管内径大得多,轨道底端与水平地面相切,弹射装置将一个小球(可视为质点)从a点水平弹射向b点并进入轨道,经过轨道后从P点水平抛出,已知小球与地面ab段间的动摩擦因数μ=0.2,不计其它机械能损失,ab段长L=1.25m,圆的半径R=0.1m,小球质量m=0.01kg,轨道质量M=0.22kg,g=10m/s
2,求:
(1)若v
=
m/s,小球从P点抛出后的水平射程;
(2)当v
至少为多大时,小球在最高点时才能使轨道对地面的压力为零.
查看答案
如图,半径R=1.0m的四分之一圆弧形光滑轨道竖直放置,圆弧最低点B与长为L=0.5m的水平面BC相切于B点,BC离地面高h=0.45m,C点与一倾角为θ=37°的光滑斜面连接,质量m=1.0kg的小滑块从圆弧上某点由静止释放,已知滑块与水平面间的动摩擦因数µ=0.1.求:
(1)若小滑块到达圆弧B点时对圆弧的压力刚好等于其重力的2倍,则小滑块应从圆弧上离地面多高处释放;
(2)试判断小滑块离开C点后将落在何处并求其在空中的飞行时间.(已知sin37°=0.6 cos37°=0.8,g取l0m/s
2)
查看答案
如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.B点右侧相距为5R的D处有一竖直固定的光滑四分之一圆弧轨道DE,其半径为R,E点切线竖直,用质量为M的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点.用同种材料、质量为m的物块将弹簧缓慢压缩到C点释放,物块到达B点时速度为v
=
,到达D点后滑上光滑的半圆轨道,在E点正上方有一离E点高度也为R的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔M、N,旋转时两孔均能达到E点的正上方.滑块滑过E点后进入M孔,又恰能从N孔落下,已知AD部分动摩擦因数为μ=0.1,g=10m/s
2.求:
(1)BC间距离;
(2)m到达D点时对轨道的压力;
(3)平台转动的角速度为ω.
查看答案
为了研究过山车的原理,某兴趣小组提出了下列设想:取一个与水平方向夹角为37°、长为l=2.0m的粗糙倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除 AB 段以外都是光滑的.其AB 与BC 轨道以微小圆弧相接,如图所示.一个小物块以初速度v
=4.0m/s从某一高处水平抛出,到A点时速度方向恰好沿 AB 方向,并沿倾斜轨道滑下.已知物块与倾斜轨道的动摩擦因数 μ=0.50.(g=10m/s
2、sin37°=0.60、cos37°=0.80)
(1)求小物块到达A点时速度.
(2)要使小物块不离开轨道,并从轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件?
(3)为了让小物块不离开轨道,并且能够滑回倾斜轨道 AB,则竖直圆轨道的半径应该满足什么条件?
查看答案
近期《科学》中文版的文章介绍了一种新技术--航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统.飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等.从1967年至1999年的17次试验中,飞缆系统试验已获得部分成功.该系统的工作原理可用物理学的基本定律来解释.如图为飞缆系统的简化模型示意图,图中两个物体P、Q的质量分别为m
P、m
Q,柔性金属缆索长为l,外有绝缘层,系统在近地轨道作圆周运动.运动过程中Q距地面高为h.设缆索总保持指向地心,P的速度为v
P.已知地球半径为R,地面的重力加速度为g.
(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外.设缆索中无电流,问缆索P、Q哪端电势高?此问中可认为缆索各处的速度均近似等于v
P,求P、Q两端的电势差;
(2)设缆索的电阻为R
1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R
2,求缆索所受的安培力多大;
(3)求缆索对Q的拉力F
Q.
查看答案