如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面的顶端固定有弹性挡板,挡板垂直于斜面,并与斜面底边平行.斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上,磁场上边界到挡板的距离s=0.55m.一个质量m=0.10kg、总电阻R=0.25Ω的单匝矩形闭合金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,并与挡板发生碰撞,碰撞过程的时间可忽略不计,且没有机械能损失.线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数μ=
/3,重力加速度g取10m/s
2.
(1)求线框受到的拉力F的大小;
(2)求匀强磁场的磁感应强度B的大小;
(3)已知线框向下运动通过磁场区域过程中的速度v随位移x的变化规律满足v=v
-
(式中v
为线框向下运动ab边刚进入磁场时的速度大小,x为线框ab边进入磁场后对磁场上边界的位移大小),求线框在斜面上运动的整个过程中产生的焦耳热Q.
查看答案
某学习小组到大学的近代物理实验室参观,实验室的老师给他们提供了一张经过放射线照射的底片,底片上面记录了在同一直线上的三个曝光的痕迹,如图所示.老师告诉他们,实验时底片水平放置,第2号痕迹位置的正下方为储有放射源的铅盒的开口,放射源可放射出α、β、γ三种射线.然后又提供了α、β、γ三种射线的一些信息如下表.已知铅盒上的开口很小,故射线离开铅盒时的初速度方向均可视为竖直向上,射线中的粒子所受重力、空气阻力及它们之间的相互作用力均可忽略不计,不考虑粒子高速运动时的相对论效应.
原子质量单位1u=1.66×10
-27kg,元电荷e=1.6×10
-19C,光速c=3.0×10
8m/s.
射线类型 | 射线性质 |
组成 | 质量 | 速度 | 电离作用 | 穿透性 |
α射线 | 24He | 4u | 0.1c | 强 | 弱 |
β射线 | -1e | u/1840 | 约为c | 较弱 | 较强 |
γ射线 | γ光子 | | c | 弱 | 强 |
(1)学习过程中老师告诉同学们,可以利用三种射线在电场或磁场中的偏转情况对它们加以辨别.如果在铅盒与底片之间加有磁感应强度B=0.70T的水平匀强磁场,请你计算一下放射源射出α射线在此磁场中形成的圆弧轨迹的半径为多大?(保留2位有效数字)
(2)老师对如图所示的“三个曝光的痕迹”解释说,底片上三个曝光的痕迹是铅盒与底片处在同一平行于三个痕迹连线的水平匀强电场中所形成的.
①试分析说明,第2号痕迹是什么射线照射形成的;
②请说明α粒子从铅盒中出来后做怎样的运动;并通过计算说明第几号曝光痕迹是由α射线照射形成的.
查看答案
如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接.A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧.两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动恰能通过轨道最高点.已知圆形轨道的半径R=0.50m,滑块A的质量m
A=0.16kg,滑块B的质量m
B=0.04kg,两滑块开始下滑时距圆形轨道底端的高度h=0.80m,重力加速度g取10m/s
2,空气阻力可忽略不计.求:
(1)A、B两滑块一起运动到圆形轨道最低点时速度的大小;
(2)滑块A被弹簧弹开时的速度大小;
(3)弹簧在将两滑块弹开的过程中释放的弹性势能.
查看答案
(1)某同学用半圆形玻璃砖测定玻璃的折射率(如图所示).实验的主要过程如下:
a.把白纸用图钉钉在木板上,在白纸上作出直角坐标系xOy,在白纸上画一条线段 AO表示入射光线.
b.把半圆形玻璃砖M放在白纸上,使其底边aa′与Ox轴重合.
c.用一束平行于纸面的激光从y>0区域沿y轴负方向射向玻璃砖,并沿x轴方向调整玻璃砖的位置,使这束激光从玻璃砖底面射出后,仍沿y轴负方向传播.
d.在AO线段上竖直地插上两枚大头针P
1、P
2.
e.在坐标系的y<0的区域内竖直地插上大头针P
3,并使得从P
3一侧向玻璃砖方向看去,P
3能同时挡住观察P
1和P
2的视线.
f.移开玻璃砖,作OP
3连线,用圆规以O点为圆心画一个圆(如图中虚线所示),此圆与AO线交点为B,与OP
3连线的交点为C.确定出B点到x轴、y轴的距离分别为x
1、y
1、,C点到x轴、y轴的距离分别为x
2、y
2.
①根据上述所确定出的B、C两点到两坐标轴的距离,可知此玻璃折射率测量值的表达式为n=______.
②若实验中该同学在y<0的区域内,从任何角度都无法透过玻璃砖看到P
1、P
2,其原因可能是:______.
(2)在“用单摆测重力加速度”的实验中,某同学的主要操作步骤如下:
a.取一根符合实验要求的摆线,下端系一金属小球,上端固定在O点;
b.在小球静止悬挂时测量出O点到小球球心的距离l;
c.拉动小球使细线偏离竖直方向一个不大的角度(约为5°),然后由静止释放小球;
d.用秒表记录小球完成n次全振动所用的时间t.
①用所测物理量的符号表示重力加速度的测量值,其表达式为g=______;
②若测得的重力加速度数值大于当地的重力加速度的实际值,造成这一情况的原因可能是______.(选填下列选项前的序号)
A.测量摆长时,把摆线的长度当成了摆长
B.摆线上端未牢固地固定于O点,振动中出现松动,使摆线越摆越长
C.测量周期时,误将摆球(n-1)次全振动的时间t记为了n次全振动的时间,并由计算式T=t/n求得周期
D.摆球的质量过大
③在与其他同学交流实验方案并纠正了错误后,为了减小实验误差,他决定用图象法处理数据,并通过改变摆长,测得了多组摆长l和对应的周期T,并用这些数据作出T
2-l图象如图甲所示.若图线的斜率为k,则重力加速度的测量值g=______.
④这位同学查阅资料得知,单摆在最大摆角θ较大时周期公式可近似表述为T=2
(1+
sin
2).为了用图象法验证单摆周期T和最大摆角θ的关系,他测出摆长为l的同一单摆在不同最大摆角θ时的周期T,并根据实验数据描绘出如图乙所示的图线.根据周期公式可知,图乙中的纵轴表示的是______,图线延长后与横轴交点的横坐标为______
查看答案