随着越来越高的摩天大楼在各地的落成,至今普遍使用的钢索悬挂式电梯已经渐渐地不适用了.这是因为钢索的长度随着楼层的增高而相应增加,这样这些钢索会由于承受不了自身的重量,还没有挂电梯就会被扯断.为此,科学技术人员正在研究用磁动力来解决这个问题.如图所示就是一种磁动力电梯的模拟机,即在竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B
1和B
2,且B
1和B
2的方向相反,大小相等,即B
1=B
2=1T,两磁场始终竖直向上作匀速运动.电梯桥厢固定在如图所示的一个阁超导材料制成的金属框abcd内(电梯桥厢在图中未画出),并且与之绝缘.电梯载人时的总质量为5×10
3kg,所受阻力f=500N,金属框垂直轨道的边长L
cd=2m,两磁场的宽度均与金属框的边长L
ac相同,金属框整个回路的电阻R=9.5×10
-4Ω,假如设计要求电梯以v
1=10m/s的速度向上匀速运动,那么,(取g=10m/s
2)
(1)磁场向上运动速度v
应该为多大?(结果保留两位有效数字)
(2)在电梯向上作匀速运动时,为维持它的运动,外界必须提供能量,那么此时系统的效率为多少?(结果保留三位有效数字)
考点分析:
相关试题推荐
特种兵过山谷的一种方法可简化为图示情景.将一根长为2d的不可伸长的细绳两端固定在相距为d的.A、B两等高点,绳上挂一小滑轮P.战士们相互配合,就可沿着绳子滑到对面.如图所示,战士甲用水平力F拉住滑轮,质量为m的战士乙吊在滑轮上,脚离地,处于静止状态,此时AP竖直.然后战士甲将滑轮从静止状态释放,若不计滑轮摩擦及空气阻力,也不计滑轮的质量,求:
(1)战士甲释放滑轮前对滑轮的水平拉力F;
(2)战士乙滑动过程中的最大速度.
查看答案
从地面竖直上抛一物体,上抛初速度v
=20m/s,物体上升的最大高度H=16m,设物体在整个运动过程中所受的空气阻力大小不变,以地面为重力势能零点,g取10m/s
2,问物体在整个运动过程中离地面多高处其动能与重力势能相等?(保留2位有效数字)
某同学的解答如下:
设物体上升至h高处动能与重力势能相等
mv
2=mgh ①
上升至h处由动能定理-mgh-F
fh=
mv
2-
mv
2 ②
上升至最高点H处由动能定理-mgh-F
fh=0-
mv
2 ③
联立以上三式,并代入数据解得h=8.9m处动能与重力势能相等.
经检查,计算无误.该同学所得结论是否有不完善之处?若有请予以补充.
查看答案
一定质量的理想气体从状态a经历了温度缓慢升高到状态d的变化,下面的表格和V-T图各记录了其部分变化过程,试求:
(1)温度325K时气体的压强.
(2)温度250K时气体的体积.
状态 | a | b |
压强p/Pa | 0.75×105 | 0.90×105 |
温度T/K | 250 | 300 |
查看答案
如图(a)所示,两个相同的盛水容器,密闭时装有相同水位的水.现在它们顶部各插有一根两端开口的玻璃管,甲容器中的玻璃管下端插入水中,乙容器中的玻璃管下端在水面上方.若打开容器底部的阀门,两个容器中均有水流出,在开始的一段时间内,水流出的速度不变的是______.(选填“甲”或“乙”)
某同学根据这一现象,猜测水流速度可能与水面上空气的压强有关,他为了验证这一猜想,设计了如图(b)所示的装置,阀门K
2控制的容器底部出水小孔是水平的.利用阀门K
1可以改变密闭容器内水面上方气体的压强,利用平抛运动知识可获得K
2刚打开时流出水的初速度.在一次实验中水深h=1m保持不变的情况下,测出水刚流出时的初速度和对应的水面上气体压强的数据记录如下表所示:
压强(×105pa) | 0.98 | 1.08 | 1.22 | 1.40 | 1.62 |
初速度(m/s) | 4.01 | 5.99 | 8.00 | 9.99 | 11.99 |
该同学根据表格中数据,推得水面上气体的压强与水流初速度的关系为______,并推出外界大气压强值为______(水的密度ρ=1.0×10
3kg/m
3,重力加速度g=10m/s
2).
查看答案
学习了法拉第电磁感应定律E∝
后,为了定量验证感应电动势E与时间△t成反比,某小组同学设计了如图所示的一个实验装置:线圈和光电门传感器固定在水平光滑轨道上,强磁铁和挡光片固定在运动的小车上.每当小车在轨道上运动经过光电门时,光电门会记录下挡光片的挡光时间△t,同时触发接在线圈两端的电压传感器记录下在这段时间内线圈中产生的感应电动势E.利用小车末端的弹簧将小车以不同的速度从轨道的最右端弹出,就能得到一系列的感应电动势E和挡光时间△t.
在一次实验中得到的数据如下表:
次数 测量值 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
E/V | 0.116 | 0.136 | 0.170 | 0.191 | 0.215 | 0.277 | 0.292 | 0.329 |
△t/×10-3s | 8.206 | 7.486 | 6.286 | 5.614 | 5.340 | 4.462 | 3.980 | 3.646 |
(1)观察和分析该实验装置可看出,在实验中,每次测量的△t时间内,磁铁相对线圈运动的距离都______(选填“相同”或“不同”),从而实现了控制______不变;
(2)在得到上述表格中的数据之后,为了验证E与△t成反比,他们想出两种办法处理数据:第一种是计算法:算出______,若该数据基本相等,则验证了E与△t成反比;第二种是作图法:在直角坐标系中作_______关系图线,若图线是基本过坐标原点的倾斜直线,则也可验证E与△t成反比.
查看答案