如图甲所示,在边界MN左侧存在斜方向的匀强电场E
1;在MN的右侧有竖直向上、场强大小为E
2=0.4N/C的匀强电场,还有垂直纸面向内的匀强磁场B(图甲中未画出)和水平向右的匀强电场E
3(图甲中未画出),B和E
3随时间变化的情况如图乙所示,P
1P
2为距MN边界2.28m的竖直墙壁,现有一带正电微粒质量为4×10
-7kg,电量为1×10
-5C,从左侧电场中距MN边界
m的A处无初速释放后沿直线运动,最后以1m/s的速度垂直MN边界进入右侧场区,设此时刻t=0,取g=10m/s
2.求:
(1)MN左侧匀强电场的电场强度E
1(sin37°=0.6);
(2)带电微粒在MN右侧场区中运动了1.5s时的速度;
(3)带电微粒在MN右侧场区中运动多长时间与墙壁碰撞?(
≈0.19)
考点分析:
相关试题推荐
如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面斜向上,长为L的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,电阻为R.两金属导轨的上端连接右侧电路,电路中R
2为一电阻箱,已知灯泡的电阻R
L=4R,定值电阻R
1=2R,调节电阻箱使R
2=12R,重力加速度为g,闭合开关S,现将金属棒由静止释放,求:
(1)金属棒下滑的最大速度v
m;
(2)当金属棒下滑距离为s
时速度恰好达到最大,则金属棒由静止开始下滑2s
的过程中,整个电路产生的电热;
(3)改变电阻箱R
2的阻值,当R
2为何值时,金属棒匀速下滑时R
2消耗的功率最大;消耗的最大功率为多少?
查看答案
如图所示,在汽车的顶部用不可伸长的细线悬挂一个质量m的小球,以大小为v
的初速度在水平面上向右做匀减速直线运动,经过时间t,汽车的位移大小为s(车仍在运动).求:
(1)汽车运动的加速度大小;
(2)当小球相对汽车静止时,细线偏移竖直方向的夹角(用反三角函数表示);
(3)汽车速度减小到零时,若小球距悬挂的最低点高度为h,O′点在O点的竖直下方.此后汽车保持静止,当小球摆到最低点时细线恰好被拉断.证明拉断细线后,小球在汽车水平底板上的落点与O'点间的水平距离s与h的平方根成正比.
查看答案
一静止的
92238U核衰变为
90234Th核时,只放出一个α粒子,已知
90234Th的质量为M
T,α粒子质量为M
α,衰变过程中质量亏损为△m,光在真空中的速度为c,若释放的核能全部转化为系统的动能,求放出的α粒子的初动能.
查看答案
有以下说法,其中正确的是( )
A.
用如图所示两摆长相等的单摆验证动量守恒定律时,只要测量出两球碰撞前后摆起的角度和两球的质量,就可以分析在两球的碰撞过程中总动量是否守恒
B.黑体辐射电磁波的强度按波长的分布只与黑体的温度有关
C.对于某种金属,只要入射光的强度足够大,就会发生光电效应
D.α粒子散射实验正确解释了玻尔原子模型
E.原子核的半衰期由核内部自身因素决定,与原子所处的化学状态和外部条件无关
F.原子核的结合能越大,核子结合得越牢固,原子越稳定
查看答案
如图所示,一束平行单色光由空气斜射入厚度为h的玻璃砖,入射光束与玻璃砖上表面夹角为θ,入射光束左边缘与玻璃砖左端距离为b
1,经折射后出射光束左边缘与玻璃砖的左端距离为b
2,可以认为光在空气中的速度等于真空中的光速c.求:光在玻璃砖中的传播速度v.
查看答案