在“极限”运动会中,有一个在钢索桥上的比赛项目.如图所示,总长为L的均匀粗钢丝绳固定在等高的A、B处,钢丝绳最低点与固定点A、B的高度差为打,动滑轮起点在A处,并可沿钢丝绳滑动,钢丝绳最低点距离水面也为H.若质量为m的参赛者抓住滑轮下方的挂钩由A点静止滑下,最远能到达右侧C点,C、B间钢丝绳相距为L′=
,高度差为h=
.参赛者在运动过程中视为质点,滑轮受到的阻力大小可认为不变,且克服阻力所做的功与滑过的路程成正比,不计参赛者在运动中受到的空气阻力、滑轮(含挂钩)的质量和大小,不考虑钢索桥的摆动及形变.重力加速度为g.求:
(1)滑轮受到的阻力大小;
(2)若参赛者不依靠外界帮助要到达召点,则参赛者在A点处抓住挂钩时至少应该具有的初动能;
(3)某次比赛规定参赛者须在钢丝绳最低点松开挂钩并落到与钢丝绳最低点水平相距为4a、宽度为a、厚度不计的海绵垫子上.若参赛者由A点静止滑下,会落在海绵垫子左侧的水中.为了能落到海绵垫子上,参赛者在A点抓住挂钩时应具有初动能的范围.
考点分析:
相关试题推荐
如图所示,半径为R的光滑半圆轨道ABC与倾角为θ=37°的粗糙斜面轨道DC相切于C,圆轨道的直径AC与斜面垂直.质量为m的小球从A点左上方距A高为h的斜面上方P点以某一速度水平抛出,刚好与半圆轨道的A点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D处.已知当地的重力加速度为g,取
,sin37°=0.6,cos37°=0.8,不计空气阻力,求:
(1)小球被抛出时的速度v
;
(2)小球到达半圆轨道最低点B时,对轨道的压力大小;
(3)小球从C到D过程中摩擦力做的功W.
查看答案
一轻质细绳一端系一质量为m=0.05kg的小球A,另一端挂在光滑水平轴O上,O到小球的距离为L=0.1m,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平距离s=2m.现有一滑块B,质量也为m,从斜面上滑下,与小球发生碰撞,每次碰后,滑块与小球速度均交换,已知滑块与挡板碰撞时不损失机械能,水平面与滑块间的动摩擦因数为μ=0.25,若不计空气阻力,并将滑块和小球都视为质点,g取10m/s
2,试问:
(1)若滑块B从斜面某一高度h处滑下与小球第一次碰撞后,使小球恰好在竖直平面内做圆周运动,求此高度h;
(2)若滑块B从h′=5m 处下滑与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数.
查看答案
如图所示,长度为L=0.9m、质量为m=1kg的木板Q放在粗糙的水平面上,Q的上表面和两个半径为R=0.2m的
光滑圆弧轨道底端相切,已知两圆弧最底端之间的距离为d=1.0m.质量也为m=1kg的小滑块P从左侧圆弧最高点(和圆心A、B等高)以竖直向下的初速度v
=
m/s开始下滑,小滑块恰不能冲出右侧的圆弧,在此过程中小滑块P和木板Q未共速,Q到右(左)圆弧底端与右(左)壁相碰后便停止运动不反弹,重力加速度为g=10m/s
2,求:
(1)P、Q之间的动摩擦因数;
(2)此过程中水平面对Q的摩擦力所做的功;
(3)P最终停止位置到右圆弧底端的距离.
查看答案
如图所示,竖直墙和3/4光滑圆轨道相切于A点,圆轨道的最低点为B、最高点为C、圆心为O、半径为R,小物体从紧贴墙的位置P由静止释放,欲使小物体不离开圆轨道,最终打在竖直墙上位置Q(图中未画出)处,并且QA距离最小,求PQ的距离.
查看答案
如图所示,在高h
1=30m的光滑水平平台上,质量m=1kg的小物块压缩弹簧后被锁扣K锁住,储存了一定量的弹性势能E
p.若打开锁扣K,小物块将以一定的速度v
1水平向右滑下平台做平抛运动,并恰好能从光滑圆弧形轨道BC上B点沿切线方向进入圆弧形轨道.B点的高度h
2=15m,圆弧轨道的圆心O与平台等高,轨道最低点C的切线水平,并与地面上动摩擦因数为μ=0.7的足够长水平粗糙轨道CD平滑连接,小物块沿轨道BCD运动最终在E点(图中未画出)静止,g=10m/s
2.求:
(1)小物块滑下平台的速度v
1;
(2)小物块原来压缩弹簧时储存的弹性势能E
p的大小和C、E两点间的距离.
查看答案