如图所示,两个共轴金属圆筒轴线O与纸面垂直,内筒筒壁为网状(带电粒子可无阻挡地穿过网格),半径为R.内圆筒包围的空间存在一沿圆筒轴线方向指向纸内的匀强磁场,磁场的磁感应强度的大小为B.当两圆筒之间加上一定电压后,在两圆筒间的空间可形成沿半径方向这指向轴线的电场.一束质量为m、电量为q的带正电的粒子自内圆筒壁上的A点沿内圆筒半径射入磁场,经磁场偏转进入电场后所有粒子都刚好不与外筒相碰.试问:
(1)要使粒子在最短时间内再次到达A点,粒子的速度应是多少?再次到达A点在磁场中运动的最短时间是多长?
(2)要使粒子在磁场中围绕圆筒的轴线O运动一周时恰能返回A点,则内、外筒之间的电压需满足什么条件?
考点分析:
相关试题推荐
作为我国对月球实施无人探测的第二阶段任务,“嫦娥二号”卫星预计在2011年前发射,登月器也将指日登陆月球.质量为m的登月器与航天飞机连接在一起,随航天飞机绕月球做半径为3R( R为月球半径)的圆周运动.当它们运行到轨道的A点时,登月器被弹离,航天飞机速度变大,登月器速度变小且仍沿原方向运动,随后登月器沿椭圆登上月球表面的B点,在月球表面逗留一段时间后,经快速起动仍沿原椭圆轨道回到分离点A并立即与航天飞机实现对接.已知月球表面的重力加速度为g
月.试求:
(1)登月器与航天飞机一起在圆周轨道上绕月球运行的周期是多少?
(2)若登月器被弹射后,航天飞机的椭圆轨道半长轴为4R,则为保证登月器能顺利返回A点,登月器可以在月球表面逗留的时间是多少?
查看答案
如图所示,cd、fe是与水平面成θ角的光滑平行金属导轨,导轨间的宽度为D,电阻不计.质量为m、电阻为r的金属棒ab平行于cf且与cf相距为L,棒ab与导轨接触良好,在导轨间存在垂直导轨平面向下的匀强磁场,磁感应强度随时间的变化关系为B=Kt(K为定值且大于零).在cf之间连接一额定电压为U、额定功率为P的灯泡.当棒ab保持静止不动时,灯泡恰好正常发光.
(1)求棒ab静止不动时,K值的大小.
(2)为了保持棒ab静止,现给其施加了一个平行导轨的力.求这个力的表达式,并分析这个力的方向.
查看答案
如图所示,在范围很大的水平向右的匀强电场中,一个带电量为-q的油滴,从A点以速度υ竖直向上射入电场.已知油滴质量为m,重力加速度为g,若要油滴运动到轨迹的最高点时,它的速度大小恰好为υ.则:
(1)所加电场的电场强度E应为多大?
(2)油滴从A点到最高点的过程中电势能改变了多少?
查看答案
如图所示,质量为m的小车,静止在光滑的水平地面上,车长为L,现给小车施加一个水平向右的恒力F,使小车向右做匀加速运动,与此同时在小车的正前方S处的正上方H高处,有一个可视为质点的小球从静止开始做自由落体运动(重力加速度为g),问恒力F满足什么条件小球可以落到小车上?
查看答案
(1)某学习小组为测量一铜芯电线的电阻率,他们截取了一段电线,用米尺测出其长度为L,用螺旋测微器测得其直径为D,用多用电表测其电阻值约为2Ω,为提高测量的精度,该小组的人员从下列器材中挑选了一些元件,设计了一个电路,重新测量这段导线(图中用R
x表示)的电阻.
A.电源E(电动势为3.0V,内阻不计)
B.电压表V
1(量程为0~3.0V,内阻约为2kΩ)
C.电压表V
2(量程为0~15.0V,内阻约为6kΩ)
D.电流表A
1(量程为0~0.6A,内阻约为1Ω)
E.电流表A
2(量程为0~3.0A,内阻约为0.1Ω)
F.滑动变阻器R
1 (最大阻值10Ω,额定电流2.0A)G.滑动变阻器R
2(最大阻值1kΩ,额定电流1.0A)
H.定值电阻R
(阻值为3Ω) I.开关S一个,导线若干
①如图1是该实验小组用千分尺对铜线直径的某次测量,其读数是______.
②为提高实验精度,请你为该实验小组设计电路图,并画在图2的方框中.
③实验时电压表选______,电流表选______,滑动变阻器选______(只填代号).
④某次测量时,电压表示数为U,电流表示数为I,则该铜芯线材料的电阻率的表达式为:ρ=______.
(2)(4分)理想变压器是指在变压器变压的过程中,线圈和铁心不损耗能量、磁场被束缚在铁心内不外漏的变压器.现有一个理想变压器有一个原线圈(匝数为n
1)和两副线圈(匝数分别为n
2、n
3).甲、乙、丙同学想探究这个理想变压器的原、副线圈两端的电压与线圈匝数的关系.
①甲同学的猜想是U
1:U
2:U
3=n
1:n
2:n
3;乙同学的猜想是U
1:U
2:U
3=n
3:n
2:n
1;丙同学的猜想是U
1n
1=U
2n
2+U
3n
3.你认为猜想合理的同学是______,你做出上述判断所依据的物理规律是______.
②为了验证理论推导的正确性,可以通过实验来探究.为保证实验安全、有效地进行,应选用______电源.
查看答案