人造地球卫星绕地球旋转时,既具有动能又具有引力势能(引力势能实际上是卫星与地球共有的,简略地说此势能是人造卫星所具有的).设地球的质量为M,以卫星离地无限远处时的引力势能为零,则质量为m的人造卫星在距离地心为r处时的引力势能为
(G为万有引力常量).
(1)试证明:在大气层外任一轨道上绕地球做匀速圆周运动的人造卫星所具有的机械能的绝对值恰好等于其动能.
(2)当物体在地球表面的速度等于或大于某一速度时,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造卫星,这个速度叫做第二宇宙速度,用v
2表示.用R表示地球的半径,M表示地球的质量,G表示万有引力常量.试写出第二宇宙速度的表达式.
(3)设第一宇宙速度为v
1,证明:
.
考点分析:
相关试题推荐
如图所示,一条轻质弹簧左端固定在水平桌面上,右端放一个可视为质点的小物块,小物块的质量为m=1.0kg,当弹簧处于原长时,小物块静止于O点,现对小物块施加一个外力,使它缓慢移动,压缩弹簧(压缩量为x=0.1m)至A点,在这一过程中,所用外力与压缩量的关系如图所示.然后释放小物块,让小物块沿桌面运动,已知O点至桌边B点的距离为L=2x.水平桌面的高为h=5.0m,计算时,可用滑动摩擦力近似等于最大静摩擦力.(g取10m/s
2)
求:(1)在压缩弹簧过程中,弹簧存贮的最大弹性势能;
(2)小物块到达桌边B点时速度的大小;
(3)小物块落地点与桌边B的水平距离.
查看答案
如图所示,一水平光滑、距地面高为h、边长为a的正方形MNPQ桌面上,用长为L的不可伸长的轻绳连接质量分别为m
A、m
B的A、B两小球,两小球在绳子拉力的作用下,绕绳子上的某点O以不同的线速度做匀速圆周运动,圆心O与桌面中心重合,已知m
A=0.5kg,L=1.2m,L
AO=0.8m,a=2.1m,h=1.25m,A球的速度大小v
A=0.4m/s,重力加速度g取10m/s
2,求:
(1)绳子上的拉力F以及B球的质量m
B;
(2)若当绳子与MN平行时突然断开,则经过1.5s两球的水平距离;
(3)两小球落至地面时,落点间的距离.
查看答案
柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:
柴油打桩机重锤的质量为m,锤在桩帽以上高度为h处(如图1)从静止开始沿竖直轨道自由落下,打在质量为M(包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l.已知锤反跳后到达最高点时,锤与已停下的桩幅之间的距离也为h(如图2).已知m=1.0×10
3kg,M=2.0×10
3kg,h=2.0m,l=0.20m,重力加速度g=10m/s
2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F是恒力,求此力的大小.
查看答案
如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P
1时速率为v
,方向沿x轴正方向;然后,经过x轴上x=2h处的 P
2点进入磁场,并经过y轴上y=-2h处的P
3点.不计重力.求
(l)电场强度的大小.
(2)粒子到达P
2时速度的大小和方向.
(3)磁感应强度的大小.
查看答案
一水平放置的水管,距地面高h=l.8m,管内横截面积S=2.0cm
2.有水从管口处以不变的速度v=2.0m/s源源不断地沿水平方向射出,设出口处横截面上各处水的速度都相同,并假设水流在空中不散开.取重力加速度g=10m/s
2,不计空气阻力.求水流稳定后在空中有多少立方米的水.
查看答案