以下说法正确的是 。
A.气体分子单位时间内与单位面积器壁碰撞的次数,仅与单位体积内的分子数有关
B.布朗运动是液体分子的运动,它说明分子不停息地做无规则热运动
C.当分子间的引力和斥力平衡时,分子势能最小
D.如果气体分子总数不变,而气体温度升高,气体的平均动能一定增大,因此压强也必然增大
如图甲所示,一个n=10匝,面积为S=0.3m2的圆形金属线圈,其总电阻为R1=2Ω, 与R2=4Ω的电阻连接成闭合电路。线圈内存在方向垂直于纸面向里,磁感应强度按B1=2t + 3 (T)规律变化的磁场。电阻R2两端通过金属导线分别与电容器C的两极相连.电容器C紧靠着带小孔a(只能容一个粒子通过)的固定绝缘弹性圆筒。圆筒内壁光滑,筒内有垂直水平面竖直向下的匀强磁场B2,O是圆筒的圆心,圆筒的内半径为r=0.4m.
(1)金属线圈的感应电动势E和电容器C两板间的电压U;
(2)在电容器C内紧靠极板且正对a孔的D处有一个带正电的粒子从静止开始经电容器C加速后从a孔垂直磁场B2并正对着圆心O进入筒中,该带电粒子与圆筒壁碰撞四次后恰好又从小孔a射出圆筒.已知粒子的比荷q/m=5×107(C/kg),该带电粒子每次与筒壁发生碰撞时电量和能量都不损失,不计粒子重力和空气阻力,则磁感应强度B2 多大(结果允许含有三角函数式)。
潜艇部队经常开展鱼雷攻击敌方舰艇演练。某次演习的简化模型为:敌舰沿直线MN匀速航行,潜艇隐蔽在Q点不动,Q到MN的距离QO=2000 m。当敌舰到达距离O点800 m的A点时,潜艇沿QO方向发射一枚鱼雷,正好在O点击中敌舰。敌舰因受鱼雷攻击,速度突然减为原来的一半,且立刻沿原运动方向做匀加速运动逃逸。100s后潜艇沿QB方向发射第二枚鱼雷,鱼雷在B点再次击中敌舰。测得OB=1500 m,不考虑海水速度的影响,潜艇和敌舰可视为质点,鱼雷的速度大小恒为25 m/s。求:
(1)敌舰第一次被击中前的速度;
(2)鱼雷由Q至B经历的时间;
(3)敌舰逃逸时的加速度大小。
二极管是一种半导体元件,电路符号为,其特点是具有单向导电性。某实验小组要对一只二极管正向接入电路时的伏安特性曲线进行测绘探究。据了解,该二极管允许通过的最大电流为50mA。
(1)该二极管外壳的标识模糊了,同学们首先用多用电表的电阻挡来判断它的正负极:当将红表笔接触二极管的左端、黑表笔接触二极管的右端时,发现指针的偏角比较小,当交换表笔再次测量时,发现指针有很大偏转,由此可判断_______ (填“左”或“右”)端为二极管的正极。
(2)实验探究中他们可选器材如下:
A.直流电源(电动势3V,内阻不计);
B.滑动变阻器(0〜20Ω);
C. 电压表(量程15V、内阻约80KΩ);
D.电压表(置程3V、内阻约50KΩ);
E. 电流表(量程0.6A、内阻约1Ω);
F.电流表(量程50mA、内阻约50Ω);
G.待测二极管;
H.导线、开关。
为了提高测量精度,电压表应选用_______,电流表应选用_______。(填序号字母)
(3) 实验中测量数据如下表,请在坐标纸上画出该二极管的伏安特性曲线。
电流I/mA |
0 |
0 |
0.2 |
1.8 |
3.9 |
8.6 |
14.0 |
21.8 |
33.5 |
50.0 |
电压U/V |
0 |
0.50 |
0.75 |
1.00 |
1.25 |
1.50 |
1.75 |
2.00 |
2.25 |
2.50 |
(4)同学们将该二极管与阻值为10Ω的定值电阻串联后接到电压恒为3V的电源两端,则 二极管导通时定值电阻的功率为_______W。
在“探究功与物体速度变化关系”的实验中,某实验研究小组的实验装置如图甲所示。小木块从A点静止释放后,在一根弹簧作用下弹出,沿足够长水平放置的木板运动到B1点停下,O点为弹簧原长时小木块所处的位置,测得OB1的距离为L1,并把此过程中弹簧对小木块做的功记为W1。用完全相同的弹簧2根、3根……并列在一起进行第2次、第3次……实验并记录相应的数据,作出弹簧对小木块做功W与小木块停下的位置距O点的距离L的图象如图乙所示。
请回答下列问题:
(1)W—L图线为什么不通过原点? 。
(2)弹簧被压缩的长度LOA = cm。
如图,MN和PQ是电阻不计的平行金属导轨,其间距为L,导轨弯曲部分光滑,平直部分粗糙,二者平滑连接。右端接一个阻值为R的定值电阻。平直部分导轨左边区域有宽度为d、方向竖直向上、磁感应强度大小为B的匀强磁场。质量为m、电阻也为R的金属棒从高度为h处静止释放,到达磁场右边界处恰好停止。已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好。则金属棒穿过磁场区域的过程中
A.流过金属棒的最大电流为
B.通过金属棒的电荷量为
C.克服安培力所做的功为mgh
D.金属棒产生的焦耳热为