如图所示,AB是固定在竖直平面内半径为R的光滑半圆弧,CD是与AB在同一竖直平面内半径为1.5R的四分之一光滑圆弧轨道,其底端D切线水平,且与AB弧圆心O
1等高现将质量为m的小球(可视为质点)从圆弧CD上与圆心O
2等高的C处由静止开始释放,小球落进半圆弧AB并与之内壁碰撞,碰撞点标为P点,碰撞过程中不损失机械能,结果小球刚好能沿原路线回到D点并能沿DC弧返回C.重力加速度g取10m/s
2.试求:
(1)小球刚滑到D点时,对D端得压力大小;
(2)O
1P的连线与O
1B的夹角α的大小;
(3)CD弧底端D距AB弧圆心O
1的距离.
考点分析:
相关试题推荐
如图所示,将倾角θ=30°、表面粗糙的斜面固定在地面上,用一根轻质细绳跨过两个光滑的半径很小的滑轮连接甲、乙两物体(均可视为质点),把甲物体放在斜面上且细绳与斜面平行,把乙物体悬在空中,并使细绳拉直且偏离竖直方向α=60°.开始时甲、乙均静止.现同时释放甲、乙两物体,乙物体将在竖直平面内往返运动,测得绳长OA为l=0.5m,当乙物体运动经过最高点和最低点时,甲物体在斜面上均恰好未滑动,已知乙物体的质量为 m=1kg,忽略空气阻力,取重力加速度g=10m/s
2,求:
(1)乙物体在竖直平面内运动到最低点时的速度大小以及所受的拉力大小;
(2)甲物体的质量以及斜面对甲物体的最大静摩擦力的大小;
(3)斜面与甲物体之间的动摩擦因数μ(设最大静摩擦力等于滑动摩擦力).
查看答案
一质量为m=40kg的小孩在电梯内的体重计上,电梯从t=0时刻由静止开始上升,在0到6s内体重计示数F的变化如图所示.
试问:在这段时间内电梯上升的高度是多少?取重力加速度g=10m/s
2.
查看答案
气垫导轨的原理是利用从导轨表面小孔喷出的压缩空气,在滑块与导轨之间形成很薄的空气膜,使滑块与导轨不直接接触.因此在实验中滑块的运动可以近似看成无摩擦运动.如图是简化的气垫导轨的示意图.
某同学在验证牛顿第二定律实验中,在气垫导轨末端固定一个光电门,滑块上有一遮光板,宽板为△L(△L很小),光电门可记录遮光板经过光电门时的遮光时间△t,实验操作和处理如下:
(1)把导轨的一端用一块木块垫起,使滑块从导轨的顶端由静止滑下,遮光板经过光电门的时间△t1,滑块经过光电门时的速度v1=______
(2)保持滑块的质量一定,在导轨的一端分别垫二块、三块…相同的木块,滑块每次从同一位置滑下,并测出经过光电门的速度v当分别垫一块和三块木块时,滑块所受合外力之比为______
(3)只要验证______ 即可验证当质量不变时a与F成正比.
(4)导轨一端垫四块木块时,滑块质量为m,滑块所受合外力为F0要保证F不变,导轨一端垫两块木块时,滑块质量为______.
查看答案
如图a所示,用铁架台、弹簧和多个已知质量且质量相等的钩码,探究在弹性限度内弹簧弹力与弹簧伸长量的关系.
①为完成实验,还需要的实验器材有:______.
②图b是弹簧所受弹力F与弹簧伸长量x的关系图线,由此可求出弹簧的劲度系数为______N/m.图线不过原点的原因是由于______.
查看答案
如图所示,质量为m
1的木块受到向右的拉力F的作用沿质量为m
2的长木板向右滑行,长木板保持静止状态.已知木块与长木板间的动摩擦因数为μ
1,长木板与地面间的动摩擦因数为μ
2,则( )
A.长木板受到地面的摩擦力大小一定为μ
2(m
1+m
2)g
B.长木板受到地面的摩擦力大小一定为μ
1m
1g
C.若改变F的大小,当F>μ
2(m
1+m
2)g时,长木板将开始运动
D.无论怎样改变F的大小,长木板都不可能运动
查看答案