如图所示,长为L的木板A静止在光滑的水平桌面上,A的左端上方放有小物体B(可视为质点),一端连在B上的细绳,绕过固定在桌子边沿的定滑轮后,另一端连在小物体C上,设法用外力使A、B静止,此时C被悬挂着.A的右端距离滑轮足够远,C距离地面足够高.已知A的质量为6m,B的质量为3m,C的质量为m.现将C物体竖直向上提高距离2L,同时撤去固定A、B的外力.再将C无初速释放,当细绳被拉直时B、C速度的大小立即变成相等,由于细绳被拉直的时间极短,此过程中重力和摩擦力的作用可以忽略不计,细绳不可伸长,且能承受足够大的拉力.最后发现B在A上相对A滑行的最大距离为
.细绳始终在滑轮上,不计滑轮与细绳之间的摩擦,计算中可认为A、B之间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s
2.
(1)求细绳被拉直前瞬间C物体速度的大小υ
;
(2)求细绳被拉直后瞬间B、C速度的大小υ;
(3)在题目所述情景中,只改变C物体的质量,可以使B从A上滑下来.
设C的质量为km,求k至少为多大?
考点分析:
相关试题推荐
如图所示为某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带长度 L=4.0m,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3.0m/s 匀速传动.三个质量均为m=1.0kg 的滑块A、B、C置于水平导轨上,开始时滑块B、C之间用细绳相连,其间有一压缩的轻弹簧,处于静止状态.滑块A以初速度v
=2.0m/s 沿B、C连线方向向B运动,A与B碰撞后粘合在一起,碰撞时间极短.连接B、C的细绳受扰动而突然断开,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度v
C=2.0m/s 滑上传送带,并从右端滑出落至地面上的P点.已知滑块C与传送带之间的动摩擦因数μ=0.20,重力加速度g取10m/s
2.求:
(1)滑块C从传送带右端滑出时的速度大小;
(2)滑块B、C用细绳相连时弹簧的弹性势能E
p;
(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C总能落至P点,则滑块A与滑块B碰撞前速度的最大值v
m是多少?
查看答案
A:如图所示,长木板A上右端有一物块B,它们一起在光滑的水平面上向左做匀速运动,速度v
=2m/s.木板左侧有一个与木板A等高的固定物体C.已知长木板A的质量为m
A=1.0kg,物块B的质量为m
B=3.0kg,物块B与木板A间的动摩擦因数μ=0.5,取g=10m/s
2.
(1)若木板A足够长,A与C第一次碰撞后,A立即与C粘在一起,求物块 B在木板A上滑行的距离L应是多少;
(2)若木板足够长,A与C发生碰撞后弹回(碰撞时间极短,没有机械能损失),求第一次碰撞后A、B具有共同运动的速度v;
(3)若木板A长为0.51m,且A与C每次碰撞均无机械能损失,求A与C碰撞几次,B可脱离A?
B:如图所示,长木板A上右端有一物块B,它们一起在光滑的水平面上向左做匀速运动,速度v
=2m/s.木板左侧有与A等高的物体C.已知长木板A的质量为m
A=1kg,物块B的质量为m
B=3kg,物块C的质量为m
c=2kg,物块B与木板A间的动摩擦因数μ=0.5,取g=10m/s
2.
(1)若木板足够长,A与C碰撞后立即粘在一起,求物块B在木板A上滑行的距离L;
(2)若木板A足够长,A与C发生弹性碰撞(碰撞时间极短,没有机械能的损失),求第一次碰撞后物块B在木板A上滑行的距离L
1;
(3)木板A是否还能与物块C再次碰撞?试陈述理由.
查看答案
探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:
①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(图a);
②由静止释放,外壳竖直上升至下端距桌面高度为h
1时,与静止的内芯碰撞(图b);
③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h
2处(图c).
设内芯与外壳的撞击力远大于笔所受重力、不计摩擦与空气阻力,重力加速度为g.求:
(1)外壳与内芯碰撞后瞬间的共同速度大小;
(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功;
(3)从外壳下端离开桌面到上升至h
2处,笔损失的机械能.
查看答案
滑板运动是青少年喜爱的一项活动.如图所示,滑板运动员以某一初速度从A点水平离开h=0.8m高的平台,运动员(连同滑板)恰好能无碰撞的从B点沿圆弧切线进入竖直光滑圆弧轨道,然后经C点沿固定斜面向上运动至最高点D.圆弧轨道的半径为1m,B、C为圆弧的两端点,其连线水平,圆弧对应圆心角θ=106°,斜面与圆弧相切于C点.已知滑板与斜面问的动摩擦因数为μ=
,g=10m/s
2,sin37°=0.6,cos37°=0.8,不计空气阻力,运动员(连同滑板)质量为50kg,可视为质点.试求:
(1)运动员(连同滑板)离开平台时的初速度v
;
(2)运动员(连同滑板)通过圆弧轨道最底点对轨道的压力;
(3)运动员(连同滑板)在斜面上滑行的最大距离.
查看答案
已知地球半径为R,地球表面重力加速度为g,万有引力常量为G,不考虑地球自转的影响.
(1)求卫星环绕地球运行的第一宇宙速度v
1;
(2)若卫星绕地球做匀速圆周运动且运行周期为T,求卫星运行半径r;
(3)由题目所给条件,请提出一种估算地球平均密度的方法,并推导出密度表达式.
查看答案