如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带有+Q
A和+Q
B的电荷量,质量分别为m
A和m
B.两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接轻质小钩.整个装置处于场强为E、方向水平向左的匀强电场中,A、B开始时静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B一直在水平面上运动且不会碰到滑轮.试求:
(1)开始A、B静止时,挡板P对物块A的作用力大小;
(2)若在小钩上挂质量为M的物块C并由静止释放,当物块C下落到最大距离时物块A对挡板P的压力恰好为零,求物块C下落的最大距离;
(3)若C的质量改为2M,则当A刚离开挡板P时,B的速度多大?
查看答案
如图所示为我国“嫦娥一号卫星”从发射到进入月球工作轨道的过程示意图.在发射过程中,经过一系列的加速和变轨,卫星沿绕地球“48小时轨道”在抵达近地点P时,主发动机启动,“嫦娥一号卫星”的速度在很短时间内由v
1提高到v
2,进入“地月转移轨道”,开始了从地球向月球的飞越.“嫦娥一号卫星”在“地月转移轨道”上经过114小时飞行到达近月点Q时,需要及时制动,使其成为月球卫星.之后,又在绕月球轨道上的近月点Q经过两次制动,最终进入绕月球的圆形工作轨道I.已知“嫦娥一号卫星”质量为m
,在绕月球的圆形工作轨道I上运动的周期为T,月球的半径r
月,月球的质量为m
月,万有引力恒量为G.
(1)求卫星从“48小时轨道”的近地点P进入“地月转移轨道”过程中主发动机对“嫦娥一号卫星”做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号卫星”在绕月球圆形工作轨道І运动时距月球表面的高度;
(3)理论证明,质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为W=Gm
月m/r.为使“嫦娥一号卫星”在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道І的高度,最终进入圆形工作轨道,其第一次制动后的速度大小应满足什么条件?
查看答案