满分5 >
高中物理试题 >
气体能够充满密闭容器,说明气体分子除相互碰撞的短暂时间外( ) A.气体分子可以...
气体能够充满密闭容器,说明气体分子除相互碰撞的短暂时间外( )
A.气体分子可以做布朗运动
B.气体分子的动能都一样大
C.相互作用力十分微弱,气体分子可以自由运动
D.相互作用力十分微弱,气体分子间的距离都一样大
考点分析:
相关试题推荐
如图所示,竖直放置的圆弧轨道和水平轨道两部分相连. 水平轨道的右侧有一质量为 2m 的滑块C 与轻质弹簧的一端相连,弹簧的另一端固定在竖直的墙M上,弹簧处于原长时,滑块C静止在P 点处;在水平轨道上方O 处,用长为L 的细线悬挂一质量为 m 的小球B,B 球恰好与水平轨道相切,并可绕O点在竖直平面内摆动.质量为 m 的滑块A 由圆弧轨道上静止释放,进入水平轨道与小球B发生弹性碰撞. P 点左方的轨道光滑、右方粗糙,滑块A、C 与PM 段的动摩擦因数均为μ=0.5,A、B、C 均可视为质点,重力加速度为g.
(1)求滑块A 从2L高度处由静止开始下滑,与B碰后瞬间B的速度.
(2)若滑块A 能以与球B 碰前瞬间相同的速度与滑块C 相碰,A 至少要从距水平轨道多高的地方开始释放?(3)在(3)中算出的最小值高度处由静止释放A,经一段时间A 与C 相碰,设碰撞时间极短,碰后一起压缩弹簧,弹簧最大压缩量为
L,求弹簧的最大弹性势能.
查看答案
航模兴趣小组设计出一架遥控飞行器,其质量m=2㎏,动力系统提供的恒定升力F=28N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10m/s
2.
(1)第一次试飞,飞行器飞行t
1=8s 时到达高度H=64m.求飞行器所阻力f的大小;
(2)第二次试飞,飞行器飞行t
2=6s 时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大宽度h;
(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t
3.
查看答案
如图所示,绷紧的传送带始终保持着大小为 v=4m/s的速度匀速运动.一质量m=1kg的小物块无初速地放到皮带A处,物块与皮带间的滑动动摩擦因数μ=
,A、B之间距离s=6m.传送带的倾角为α=30°,(g=10m/s
2)
(1)求物块从A运动到B的过程中摩擦力对物体做多少功?
(2)摩擦产生的热为多少?
(3)因传送小木块电动机多输出的能量是多少?
查看答案
利用气垫导轨验证机械能守恒定律,实验装置示意图如图1所示:
(1)实验步骤:
①将气垫导轨放在水平桌面上,桌面高度不低于lm,将导轨调至水平;
②用游标卡尺测量挡光条的宽度l,结果如图2所示,由此读出l=______mm;
③由导轨标尺读出两光电门中心之间的距离s=______m;
④将滑块移至光电门1左侧某处,待砝码静止不动时,释放滑块,要求砝码落地前挡光条已通过光电门2;
⑤从数字计时器(图1中未画出)上分别读出挡光条通过光电门1和光电门2所用的时间△t
1和△t
2;
⑥用天平称出滑块和挡光条的总质量M,再称出托盘和砝码的总质量m.
(2)用表示直接测量量的字母写出下列所示物理量的表达式:
①滑块通过光电门1和光电门2时瞬时速度分别为v
1=______和v
2=______.
②当滑块通过光电门1和光电门2时,系统(包括滑块、挡光条、托盘和砝码)的总动能分别为E
k1=______和E
k2=______.
③在滑块从光电门1运动到光电门2的过程中,系统势能的减少△E
P=______(重力加速度为g).
(3)如果△E
P=______,则可认为验证了机械能守恒定律.
查看答案
如图所示,为轿车五挡手动变速器,下表列出了某种型号轿车的部分数据.轿车中有用于改变车速的排挡,手推变速杆可达到不同挡位,可获得不同的运行速度,若从一挡到五挡速度逐渐增大,下列说法中正确的是( )
长/mm×宽/mm×高/mm | 4 871×1 835×1 460 |
净重/kg | 1 500 |
传动系统 | 前轮驱动与五挡变速 |
发动机类型 | 直列4缸 |
发动机排量(L) | 2.2 |
最高时速(km/h) | 252 |
0~72km/h的加速时间(s) | 10 |
额定功率(kW) | 140 |
A.若该车要以最大动力上坡,变速杆应推至五挡
B.若把0~72km/h的加速过程视为匀加速直线运动,则此过程中轿车的加速度为2m/s
2C.若该车在水平路面上以额定功率行驶,则当速度v=72km/h时加速度为
m/s
2D.当该车在水平路面上以额定功率和最高速度运行时,轿车的牵引力为3000N
查看答案