(8分)如图所示,质量m=0.5kg的物体放在水平面上,在F=3.0N的水平恒定拉力作用下由静止开始运动,物体发生位移x=4.0m时撤去力F,物体在水平面上继续滑动一段距离后停止运动。已知物体与水平面间的动摩擦因数μ=0.4,重力加速度g取10m/s2。求:
(1)物体在力F作用过程中加速度的大小;
(2)撤去力F的瞬间,物体速度的大小;
(3)撤去力F后物体继续滑动的时间。
(8分)两位同学用如图所示装置,通过半径相同的A、B两球的碰撞来验证动量守恒定律。
(1)实验中必须满足的条件是 。
A.斜槽轨道尽量光滑以减小误差
B.斜槽轨道末端的切线必须水平
C.入射球A每次必须从轨道的同一位置由静止滚下
D.两球的质量必须相等
(2)测量所得入射球A的质量为mA,被碰撞小球B的质量为mB,图中O点是小球抛出点在水平地面上的垂直投影,实验时,先让入射球A从斜轨上的起始位置由静止释放,找到其平均落点的位置P,测得平抛射程为OP;再将入射球A从斜轨上起始位置由静止释放,与小球B相撞,分别找到球A和球B相撞后的平均落点M、N,测得平抛射程分别为OM和ON。当所测物理量满足表达式 时,即说明两球碰撞中动量守恒;如果满足表达式 时,则说明两球的碰撞为完全弹性碰撞。
(3)乙同学也用上述两球进行实验,但将实验装置进行了改装:如图所示,将白纸、复写纸固定在竖直放置的木条上,用来记录实验中球A、球B与木条的撞击点。实验时,首先将木条竖直立在轨道末端右侧并与轨道接触,让入射球A从斜轨上起始位置由静止释放,撞击点为B′;然后将木条平移到图中所示位置,入射球A从斜轨上起始位置由静止释放,确定其撞击点P′;再将入射球A从斜轨上起始位置由静止释放,与球B相撞,确定球A和球B相撞后的撞击点分别为M′和N′。测得B′与N′、P′、M′各点的高度差分别为h1、h2、h3。若所测物理量满足表达式 时,则说明球A和球B碰撞中动量守恒。
(7分)某同学用如图所示的实验装置验证牛顿第二定律,请回答下列有关此实验的问题:
(1)该同学在实验前准备了图中所示的实验装置及下列辅助器材:
A.交流电源、导线
B.天平(含配套砝码)
C.秒表
D.刻度尺
E.细线、砂和小砂桶
其中不必要的器材是 (填代号)。
(2)打点计时器在小车拖动的纸带上打下一系列点迹,以此记录小车的运动情况。其中一部分纸带上的点迹情况如图甲所示,已知打点计时器打点的时间间隔T=0.02s,测得A点到B、C点的距离分别为x1=5.99cm、x2=13.59cm,则在打下点迹B时,小车运动的速度vB= m/s;小车做匀加速直线运动的加速度a= m/s2。(结果保留三位有效数字)
(3)在验证“质量一定,加速度a与合外力F的关系”时,某学生根据实验数据作出了如图乙所示的a-F图象,其中图线不过原点的原因是 ,图线在末端弯曲的原因是 。
如图甲所示,平行于光滑斜面的轻弹簧劲度系数为k,一端固定在倾角为θ的斜面底端,另一端与物块A连接;两物块A、B质量均为m,初始时均静止。现用平行于斜面向上的力F拉动物块B,使B做加速度为a的匀加速运动,A、B两物块在开始一段时间内的v-t关系分别对应图乙中A、B图线(t1时刻A、B的图线相切,t2时刻对应A图线的最高点),重力加速度为g,则
A.t2时刻,弹簧形变量为0
B.t1时刻,弹簧形变量为(mgsinθ+ma)/k
C.从开始到t2时刻,拉力F逐渐增大
D.从开始到t1时刻,拉力F做的功比弹簧弹力做的功少
类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v-t图象求位移的方法。请你借鉴此方法分析下列说法,其中正确的是
A.由a-t(加速度-时间)图线和横轴围成的面积可以求出对应时间内做直线运动物体的速度变化量
B.由F-v(力-速度)图线和横轴围成的面积可以求出对应速度变化过程中力做功的功率
C.由F-x(力-位移)图线和横轴围成的面积可以求出对应位移内力所做的功
D.由ω-r(角速度-半径)图线和横轴围成的面积可以求出对应半径变化范围内做圆周运动物体的线速度
如图所示,质量为m的小球从距离地面高H的A点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用到达距地面深度为h的B点速度减为零。不计空气阻力,重力加速度为g。关于小球下落的整个过程,下列说法中正确的有
A.小球的机械能减少了mg(H+h)
B.小球克服阻力做的功为mgh
C.小球所受阻力的冲量大于m
D.小球动量的改变量等于所受阻力的冲量