如图所示,斜面体M的底面粗糙,斜面光滑,放在粗糙水平面上。弹簧的一端固定在墙面上,另一端与放在斜面上的物块m相连,弹簧的轴线与斜面平行。若物块在斜面上做来回运动,斜面体保持静止,则地面对斜面体的摩擦力f与时间t的关系图象应是下图中的哪一个
从同一高度同时以20m/s的速度抛出两小球,一球竖直上抛,另一球竖直下抛。不计空气阻力,取重力加速度为10m/s2。则它们落地的时间差为
A.2s B.4s C.5s D.6s
(12分).如图所示,水平面上有一个动力小车,在动力小车上竖直固定着一个长度L1、宽度L2的矩形线圈,线圈匝线为n,总电阻为R,小车和线圈的总质量为m,小车运动过程所受摩擦力为f。小车最初静止,线圈的右边刚好与宽为d(d﹥L1)的有界磁场的左边界重合。磁场方向与线圈平面垂直,磁感应强度为B。现控制动力小车牵引力的功率,让它以恒定加速度a进入磁场,线圈全部进入磁场后,开始做匀速直线运动,直至完全离开磁场,整个过程中,牵引力的总功为W。
(1)求线圈进入磁场过程中,感应电流的最大值和通过导线横截面的电量。
(2)求线圈进入磁场过程中,线圈中产生的焦耳热。
(3)写出整个过程中,牵引力的功率随时间变化的关系式。
(10分)如图所示,水平方向的匀强电场场强为E,场区宽度为L,竖直方向足够长,紧挨着电场的是垂直于纸面向外的两个匀强磁场区域,其磁感应强度分别为B和2B。一个质量m,电荷量为q的带正电粒子,其重力不计,从电场的边界MN上的a点由静止释放,经电场加速后进入磁场,经过时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b,途中虚线为场区的分界面。求:
(1)中间场区的宽度d;
(2)粒子从a点到b点所经历的时间;
(3)当粒子第n次返回电场的MN边界时与出发点之间的距离。
(10分)如图10所示,半径为R的四分之一圆弧形支架竖直放置,圆弧边缘C处有一小定滑轮,绳子不可伸长,不计一切摩擦,开始时,m1、m2两球静止,且m1>m2,试求:
(1)m1释放后沿圆弧滑至最低点A时的速度.
(2)为使m1能到达A点,m1与m2之间必须满足什么关系.
(3)若A点离地高度为2R,m1滑到A点时绳子突然断开,则m1落地点离A点的水平距离是多少?
(8分)有一种测量压力的电子秤,其原理图如图所示。E是内阻不计、电动势为6V的电源。R0是一个阻值为400Ω的限流电阻。G是由理想电流表改装成的指针式测力显示器。R是一个压敏电阻,其阻值可随压力大小变化而改变,其关系如下表所示。C是一个用来保护显示器的电容器。秤台的重力忽略不计。试分析:
压力F/N |
0 |
50 |
100 |
150 |
200 |
250 |
300 |
电阻R/Ω |
300 |
280 |
260 |
240 |
220 |
200 |
180 |
(1)利用表中的数据归纳出电阻R随压力F变化的函数式
(2)若电容器的耐压值为5V,该电子秤的最大称量值为多少牛顿?
(3)通过寻求压力与电流表中电流的关系,说明该测力显示器的刻度是否均匀?