假设将来人类登上了火星,考察完毕后,乘坐一艘宇宙飞船从火星返回地球时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法,正确的是
A.飞船在轨道I上运动时的机械能大于在轨道II上运动时的机械能
B.飞船在轨道II上运动时,经过P点时的速度大于经过Q点时的速度
C.飞船在轨道III上运动到P点时的加速度等于飞船在轨道II上运动到P点时的加速度
D.飞船绕火星在轨道I上运动的周期跟飞船返回地面的过程中绕地球以轨道I同样的轨道半径运动的周期相同
(12分)如图a所示,与水平方向成37°角的直线MN下方有与MN垂直向上的匀强电场,现将一重力不计、比荷的正电荷置于电场中的O点由静止释放,经过后,电荷以v0=1.5×l04m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻)。求:
(1)匀强电场的电场强度E;
(2)图b中时刻电荷与第一次通过MN的位置相距多远; (3)如果电荷第一次通过MN的位置到N点的距离d=68cm,在N点上方且垂直MN放置足够大的挡板.求电荷从O点出发运动到挡板所需的时间。
(9分)如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,极板长L=0.1m,两板间距离d=0.4cm,有一束由相同微粒组成的带正电粒子流,以相同的初速度V0从两板中央依次水平射入(每隔0.1s射入一个微粒),由于重力作用微粒能落到下板,已知微粒质量m=2×10-6kg,电量q=l×10-8C,电容器电容C=l×10-6F。取g=10m/s2,整个装置处在真空中。求:
(1)第一颗微粒落在下板离端点A距离为的O点,微粒射人的初速度V0应为多大?
(2)以上述速度V0射入的带电微粒最多能有多少个落在下极板上?
(9分)如图,在竖直平面内有一固定光滑轨道,其中AB部分是倾角为37°的直轨道,BCD部分是以O为圆心、半径为R的圆弧轨道,两轨道相切于B点,D点与O点等高,A点在D点的正下方。质量为m的小球在沿斜面向上的拉力F作用下,从A点由静止开始做变加速直线运动,到达B点时撤去外力。已知小球刚好能沿圆轨道经过最高点C,然后经过D点落回到A点。已知sin37°=0.6,cos37°=0.8,重力加速度大小为g。求
(1)小球在C点的速度的大小;
(2)小球在AB段运动过程,拉力F所做的功;
(3)小球从D点运动到A点所用的时间。
(6分)我国第一艘航空母舰“辽宁号”已经投入使用,为使战斗机更容易起飞,“辽宁号”使用了滑跃起飞技术,如图甲所示。其甲板可简化为乙图模型;AB部分水平,BC部分倾斜,倾角为θ。战斗机从A点开始滑跑,C点离舰,此过程中发动机的推力和飞机所受甲板和空气阻力的合力大小恒为F,战斗机在AB段和BC段滑跑的时间分别为t1和t2,战斗机质量为m。求战斗机离舰时的速度多大?
某同学设计了如图所示的电路测电源电动势E及电阻R1的阻值。实验器材有:待测电源E,待测电阻R1,定值电阻R2,电流表A(量程为0.6A,内阻不计),电阻箱R(0-99.99Ω),单刀单掷开关S1,单刀双掷开关S2,导线若干。
(1)先测电阻R1的阻值(R1只有几欧姆)。请将小明同学的操作补充完整:闭合S1,将S2切换到a,调节电阻箱,读出其示数r1和对应的电流表示数l,将S2切换到b, ,读出此时电阻箱的示数r2,则电阻R1的表达式为R1= 。
(2)该同学已经测得电阻R1=2.Ω,继续测电源电动势E。该同学的做法是:闭合S1,将S2切换到b,多次调节电阻箱.读出多组电阻箱示数R和对应的电流表示数I,由测得的数据,绘出了如图中所示的图线.则电源电动势E= V: