一长=0.80m的轻绳一端固定在点,另一端连接一质量=0.10kg的小球,悬点距离水平地面的高度H = 1.00m。开始时小球处于点,此时轻绳拉直处于水平方向上,如图所示。让小球从静止释放,当小球运动到点时,轻绳碰到悬点正下方一个固定的钉子P时立刻断裂。不计轻绳断裂的能量损失,取重力加速度g=10m/s2。求:
(1)当小球运动到点时的速度大小;
(2)绳断裂后球从点抛出并落在水平地面的C点,求C点与点之间的水平距离;
(3)若OP=0.6m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力。
甲、乙两个同学在直跑道上进行4×100m接力(如图所示),他们在奔跑时有相同的最大速度,乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可看作匀加速直线运动.现在甲持棒以最大速度向乙奔来,乙在接力区伺机全力奔出.若要求乙接棒时奔跑的速度达到最大速度的80%,则:
(1)乙在接力区须奔出多少距离?
(2)乙应在距离甲多远时起跑?
某同学将力传感器固定在小车上,然后把绳的一端固定在传感器拉钩上,用来测量绳对小车的拉力,探究在小车及传感器总质量不变时加速度跟它们所受拉力的关系,根据所测数据在坐标系中作出了如图所示的a-F图象.
(1)图线不过坐标原点的原因是 ;
(2)本实验中是否仍需要砂和桶的总质量远小于小车和传感器的总质量______(填“是”或“否”);
(3)由图象求出小车和传感器的总质量为________ kg.
下图为接在50Hz低压交流电源上的打点计时器,在纸带做匀加速直线运动时打出的一条纸带,图中所示的是每打5个点所取的记数点,但第3个记数点没有画出。由图数据可求得:
(1)该物体的加速度为 m/s2,
(2)第3个记数点与第2个记数点的距离约为 cm,
(3)打第2个计数点时该物体的速度为 m/s。
(4)如果当时电网中交变电流的频率是f=51Hz,而做实验的同学并不知道,那么加速度的测量值与实际值相比 (选填:偏大、偏小或不变).
如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍, A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动。开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是:( )
A.当 时,A、B相对于转盘会滑动
B.当时,绳子一定有弹力
C.ω在范围内增大时,A所受摩擦力一直变大
D.ω在 范围内增大时,B所受摩擦力变大
某同学用一个空的“易拉罐”做实验,他在靠近罐底的侧面打一个小洞,用手指堵住洞口,向“易拉罐”里面注满水,再把它悬挂在电梯的天花板上;当电梯匀速上升时,他移开手指,水就从洞口喷射出来,在水未流完之前,电梯开始减速上升.关于电梯减速上升前、后的两个瞬间水的喷射情况,下列说法中可能正确的是( )
A.电梯减速前后水的喷射速率不变
B.电梯减速后水不再从孔中喷出
C.电梯减速后水的喷射速率突然变大
D.电梯减速后水的喷射速率突然变小