如图所示,一定质量的理想气体从状态A变化到状态B,再由B变化到C。已知状态A的温度为250K。
①求气体在状态B的温度;
②由状态B变化到状态C的过程中,气体是吸热还是放热?简要说明理由。
关于热现象和热学规律,下列说法中正确的是
A.只要知道气体的摩尔体积和阿伏伽德罗常数,就可以算出气体分子的体积
B.悬浮在液体中的固体微粒越小,布朗运动就越明显
C.一定质量的理想气体,保持气体的压强不变,温度越高,体积越大
D.一定温度下,饱和汽的压强是一定的
E.第二类永动机不可能制成是因为它违反了能量守恒定律
F.由于液体表面分子间距离大于液体内部分子间的距离,液面分子间只有引力,没有斥力,所以液体表面具有收缩的趋势
如图,OAC的三个顶点的坐标分别为O(0,0)、A(0,L)、C(,0),在OAC区域内有垂直于xOy平面向里的匀强磁场。在t=0时刻,同时从三角形的OA边各处以沿y轴正向的相同速度将质量均为m,电荷量均为q的带正电粒子射入磁场,已知在t=t0时刻从OC边射出磁场的粒子的速度方向垂直于y轴。不计粒子重力和空气阻力及粒子间相互作用。
(1)求磁场的磁感应强度B的大小;
(2)若从OA边两个不同位置射入磁场的粒子,先后从OC边上的同一点P(P点图中未标出)射出磁场,求这两个粒子在磁场中运动的时间t1与t2之间应满足的关系;
(3)从OC边上的同一点P射出磁场的这两个粒子经过P点的时间间隔与P点位置有关,若该时间间隔最大值为,求粒子进入磁场时的速度大小。
如图所示,公路上有一辆公共汽车以10m/s的速度匀速行驶,为了平稳停靠在站台,在距离站台P左侧位置50m处开始刹车做匀减速直线运动。同时一个人为了搭车,从距站台P右侧位置30m处从静止正对着站台跑去,假设人先做匀加速直线运动,速度达到4m/s后匀速运动一段时间,接着做匀减速直线运动,最终人和车到达P位置同时停下,人加速和减速时的加速度大小相等。求:
(1)汽车刹车的时间;
(2)人的加速度的大小。
某同学在“测定金属的电阻率”的实验中:
①用螺旋测微器测量金属丝的直径如图甲所示,则该金属丝的直径为 mm。
②先用多用电表粗测其电阻Rx。将选择开关调到欧姆挡“×10”挡位并调零,其表盘及指针所指位置如图乙所示,则此段金属丝的电阻为 。
③现要进一步精确测量Rx的阻值,实验室提供了以下器材:
直流电源E(电动势4V,内阻不计)
电流表A1(量程30mA,内阻约为1)
电流表A2(量程500A,内阻为100)
滑动变阻器R1(最大阻值为10)
电阻箱R2(最大阻值9999.9)
电阻箱R3(最大阻值999.9)
电键S及导线若干。
为了测定金属丝上的电压,可以将电流表 (选填“A1”或“A2”)串联电阻箱 (选填“R2"或“R3”),将其改装成一个量程为3.0V的电压表。如图丙所示,该同学设计了测量电阻Rx的a、b两种方案,其中用到了改装后的电压表和另一个电流表,则要精确测量应选方案 (选填“a”或“b”)。
橡皮筋也像弹簧一样,在弹性限度内伸长量x与弹力F成正比,即F = kx,k的值与橡皮筋的原长L、横截面积S有关。理论与实验都表明,其中Y是由材料决定的常数,材料力学中称之为杨氏模量。
①在国际单位中,杨氏模量Y的单位应该是 A. N B. m C. N/m D.N/m2
②某同学通过实验测得该橡皮筋的一些数据,做出了外力F与伸长量x之间的关系图像如图所示。由图像
可求得该橡皮筋的劲度系数k = N/m 。
③若该橡皮筋的原长是10.0cm,面积是1.0mm2,则该橡皮筋的杨氏模量Y的大小是 (保留两位有效数字)。