如图所示,无限长导线,均通以恒定电流I.直线部分和坐标轴接近重合,弯曲部分是以坐标原点O为圆心的相同半径的一段圆弧,已知直线部分在原点O处不形成磁场,则图乙中O处磁感应强度和图甲中O处磁感应强度相同的是( )
用质量为M的吸铁石,将一张质量为m的白纸压在竖直固定的磁性黑板上.某同学沿着黑板面,用水平向右的恒力F轻拉白纸,白纸未移动,则此时黑板对白纸的摩擦力的大小为( )
A.F B.mg
C. D.
下列关于物理学思想方法的叙述错误的是( )
A.探究加速度与力和质量关系的实验中运用了控制变量法
B.电学中电阻、场强和电势的定义都运用了比值法
C.力学中将物体看成质点运用了理想化模型法
D.Δt→0时的平均速度可看成瞬时速度运用了等效替代法
如图甲所示,平行正对金属板中心线O处有一粒子源,能连续不断发出质量为m、电量为q、速度为v0的带正电的粒子,所有粒子均沿两板中心线射入板间,在紧靠板的上方等腰三角形PQR内有一垂直纸面向里的匀强磁场,三角形的对称轴与两板中心线重合,且∠RPQ=30°.两板间不加电压时粒子进入磁场时轨迹恰好与PR边相切,如图中所示.当在两板间加如图乙所示的周期性变化的电压时,t=0时刻进入板间的粒子恰好能从板边缘进入磁场.已知板长为l,板间距离为2d,PQ长度为6d,不计粒子的重力和粒子间的相互作用.求:
⑴磁感应强度B的大小;
⑵两板间电压U0;
⑶粒子在磁场中运动的最长和最短时间.
某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8。
⑴求物块由A点运动到C点的时间;
⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;
⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.
如图,POQ是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP=OQ=L.整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B=B0-kt(其中k为大于0的常数).一质量为m、长为L、电阻为R、粗细均匀的导体棒锁定于OP、OQ的中点a、b位置.当磁感应强度变为B0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v.导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g.求导体棒:
⑴解除锁定前回路中电流的大小及方向;
⑵滑到导轨末端时的加速度大小;
⑶运动过程中产生的焦耳热.