宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对他们的引力作用。设四星系统中每个星体质量均为m,半径均为R,四颗星稳定分别在边长为a的正方形的四个顶点上,其中a远大于R。已知引力常量为G。关于四星系统,下列说法正确的是
A、四颗星围绕正方形对角线的交点做匀速圆周运动
B、四颗星的线速度均为
C、四颗星表面的重力加速度均为
D、四颗星的周期均为
月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球绕O点运动的线速度大小之比约为
A 1∶6400
B 1∶80
C 80∶1
D 6400∶1
经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线速度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。现测得两颗星之间的距离为L,质量之比为m1︰m2=3︰2。则可知
A.m1︰m2做圆周运动的角速度之比为2︰3
B.m1︰m2做圆周运动的线速度之比为3︰2
C.m1做圆周运动的半径为
D.m2做圆周运动的半径为
我们的银河系的恒星中大约四分之一是双星。某双星是由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此可求出S2的质量为
C. D.
同重力场作用下的物体具有重力势能一样,万有引力场作用下的物体同样具有引力势能。若取无穷远处引力势能为零,物体距星球球心距离为r时的引力势能为
星球上以初速度v0竖直向上抛出一个质量为m的物体,不计空气阻力,经t秒后物体落回手中,则
发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是
A、卫星在轨道3上的速率大于在轨道1上的速率。
B、卫星在轨道3上的角速度小于在轨道1上的角速度。
C、卫星在轨道1上经过Q点时加速度大于它在轨道2上经过Q点时的加速度。
D 卫星在轨道1上经过Q点时加速度等于它在轨道2上经过Q点时的加速度。