如图甲所示,水平加速电场的加速电压为U0,在它的右侧有由水平正对放置的平行金属板a、b构成的偏转电场,已知偏转电场的板长L=0.10 m,板间距离d=5.0×10-2m,两板间接有如图15乙所示的随时间变化的电压U,且a板电势高于b板电势。在金属板右侧存在有界的匀强磁场,磁场的左边界为与金属板右侧重合的竖直平面MN,MN右侧的磁场范围足够大,磁感应强度B=5.0×10-3T,方向与偏转电场正交向里(垂直纸面向里)。质量和电荷量都相同的带正电的粒子从静止开始经过电压U0=50V的加速电场后,连续沿两金属板间的中线OO′方向射入偏转电场中,中线OO′与磁场边界MN垂直。已知带电粒子的比荷=1.0×108C/kg,不计粒子所受的重力和粒子间的相互作用力,忽略偏转电场两板间电场的边缘效应,在每个粒子通过偏转电场区域的极短时间内,偏转电场可视作恒定不变。
(1)求t=0时刻射入偏转电场的粒子在磁场边界上的入射点和出射点间的距离;
(2)求粒子进入磁场时的最大速度;
(3)对于所有进入磁场中的粒子,如果要增大粒子在磁场边界上的入射点和出射点间的距离,应该采取哪些措施?试从理论上推理说明。
如图,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N。一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g)。
(1)判断小球的带电性质并求出其所带电荷量;
(2)P点距坐标原点O至少多高;
(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间小球距坐标原点O的距离s为多远?
由光滑细管组成的轨道如图所示,其中AB段和BC段是半径为R的四分之一圆弧,轨道固定在竖直平面内.一质量为m的小球,从距离水平地面高为H的管口D处静止释放,最后能够从A端水平抛出落到地面上.下列说法正确的是
A.小球落到地面时相对于A点的水平位移值为
B.小球落到地面时相对于A点的水平位移值为
C.小球能从细管A端水平抛出的条件是
D.小球能从细管A端水平抛出的最小高度
公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处
A.路面外侧高内侧低
B.车速只要低于,车辆便会向内侧滑动
C.车速虽然高于,但只要不超出某一最高限度,车辆便不会向外侧滑动
D.当路面结冰时,与未结冰时相比,的值变小
如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们分居圆心两侧,与圆心距离分别为RA=r,RB=2r,与盘间的动摩擦因数μ相同,当圆盘转速加快到两物体刚好还未发生滑动时,最大静摩擦力等于滑动摩擦力,下列说法正确的是
A.此时绳子张力为
B.此时圆盘的角速度为
C.此时A所受摩擦力方向沿半径指向圆外
D.此时烧断绳子,A仍相对盘静止,B将做离心运动
如图所示,轻杆长为L.一端固定在水平轴上的O点,另一端系一个小球(可视为质点).小球以O为圆心在竖直平面内做圆周运动,且能通过最高点,g为重力加速度.下列说法正确的是
A.小球通过最高点时速度不可能小于
B.小球通过最高点时所受轻杆的作用力可能为零
C.小球通过最高点时所受轻杆的作用力随小球速度的增大而增大
D.小球通过最高点时所受轻杆的作用力随小球速度的增大而减小