在2014年的某省抗洪战斗中,一摩托艇要到正对岸抢救物质,关于该摩托艇能否到达正对岸的说法中正确的是( )
A. 只要摩托艇向正对岸行驶就能到达正对岸
B. 由于水流有较大的速度,摩托艇不能到达正对岸
C. 虽然水流有较大的速度,但只要摩托艇向上游某一方向行驶,一定能到达正对岸
D. 有可能不论摩托艇怎么行驶,他都不能到达正对岸
如图所示为物体做直线运动的v-t图象。若将该物体的运动过程用x-t图象表示出来(其中x为物体相对出发点的位移),则下列选项中的四幅图描述正确的是( )
如图,半径为R的光滑半圆形轨道ABC在竖直平面内,与水平轨道CD相切于C 点,D端有一被锁定的轻质压缩弹簧,弹簧左端连接在固定的挡板上,弹簧右端Q到C点的距离为2R。质量为m的滑块(视为质点)从轨道上的P点由静止滑下,刚好能运动到Q点,并能触发弹簧解除锁定,然后滑块被弹回,且刚好能通过圆轨道的最高点A。已知∠POC=60°,求:
⑴滑块第一次滑至圆形轨道最低点C时对轨道压力;
⑵滑块与水平轨道间的动摩擦因数μ;
⑶弹簧被锁定时具有的弹性势能。
一平板车,质量M =100kg,停在水平路面上,车身的平板离地面的高度h =1.25m。一质量m =50kg的滑块置于车的平板上,它到车板末端的距离b=1.00m,与车板间的动摩擦因数μ=0.20,如图所示,今对平板车施一水平方向的恒力,使车向前行驶,结果滑块从车板上滑落,滑块刚离开车板的时刻,车向前行驶的距离s0=2.00m。求滑块落地时,落地点到车尾的距离s(不计路面与平板车间以及轮轴的摩擦,g=10m/s2)
传送皮带在生产生活中有着广泛的应用,一运煤传送皮带与水平面夹角为30°,以2m/s的恒定速度顺时针运行。现将一质量为10kg的煤块(视为质点)轻放于底端,经一段时间送到高2m的平台上,煤块与皮带间的动摩擦因数为μ=,取g=10m/s2,求
(1)煤块从底端到平台的时间;
(2)带动皮带的电动机由于传送煤块多消耗的电能。
如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O点处于同一水平线上的P点处有一个光滑的细钉。已知OP=,在A点给小球一个水平向左的初速度v0,发现小球恰能到达跟P点在同一竖直线上的最高点B,则:
(1)小球到达B点时的速率?
(2)若不计空气阻力,则初速度v0为多少?
(3)若初速度v0=,则在小球从A到B的过程中克服空气阻力做了多少功?