如图所示是放置在竖直平面内游戏滑轨的模拟装置,滑轨由四部分粗细均匀的金属杆组成:水平直轨AB,半径分别为R1和R2的圆弧轨道, 其中R2=3.0m,长为L=6m的倾斜直轨CD,AB.CD与两圆弧轨道相切,其中倾斜直轨CD部分表面粗糙,动摩擦因数为μ=1/6,其余各部分表面光滑,一质量为m=2kg的滑环(套在滑轨上),从AB的中点E处以V0=10m/s的初速度水平向右运动。已知θ=370, g取10m/s2。(sinθ=0.6,cosθ=0.8)求:
(1)滑环第一次通过圆弧轨道O2的最低点F处时对轨道的压力;
(2)滑环克服摩擦力做功所通过的总路程。
如图a,质量m=1kg的物体沿倾角=37的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v成正比,比例系数用k表示,物体加速度a与风速v的关系如图b所示。求:
(1)物体与斜面间的动摩擦因数;
(2)比例系数k。(sin370=0.6,cos370=0.8,g=10m/s2)
如下面右图所示,用包有白纸的质量为1.00kg的圆柱棒替代纸带和重物,蘸有颜料的毛笔固定在电动机上并随之转动,使之替代打点计时器。当烧断悬挂圆柱棒的线后,圆柱棒竖直自由下落,毛笔就在圆柱棒面上的纸上画出细线,如左图所示,设毛笔接触棒时不影响棒的运动。测得各线之间的距离依次为26.0mm、42.0mm、58.0mm、74.0mm、90.0mm、106.0mm,已知电动机铭牌上标有“1500r/min”字样,由此验证机械能守恒。根据以上内容,回答下列问题:
(1)左图中的圆柱棒的 端是悬挂端(填左或右)。
(2)根据左图所给的数据,可知毛笔画下细线C时,圆柱棒下落的速度VC= m/s;画下细线D时,圆柱棒下落的速度VD= m/s;细线C.D之间棒的动能的动能的变化量为 J,重力势能的变化量为 J(取g=9.8m/s2)。由此可得出的结论是 。
一个实验小组在“探究弹力和弹簧伸长量的关系”的实验中,使用两条不同的轻质弹簧a和b,得到弹力与弹簧长度的图象如图所示。下列表述正确的是 ( )
A.a的原长比b的长
B.a的劲度系数比b的大
C.a的劲度系数比b的小
D.测得的弹力与弹簧的长度成正比
在倾角为的固定光滑斜面上有两个用轻弹簧相连接的物块A.B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。现用一平行于斜面向上的恒力F拉物块A使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v,则此时
A.物块B的质量满足
B.物块A的加速度为
C.拉力做功的瞬时功率为
D.此过程中,弹簧弹性势能的增量为
如图所示,竖直面有两个3/4圆形导轨固定在一水平地面上,半径R相同,A轨道由金属凹槽制成,B轨道由金属圆管制成,均可视为光滑轨道。在两轨道右侧的正上方将质量均为m的金属小球A和B由静止释放,小球距离地面的高度分别用hA和hB表示,则下列说法正确的是( )
A.适当调整hA和hB,均可使两小球从轨道最高点 飞出后,恰好落在轨道右端口处
B.若hA=hB=2R,则两小球在轨道最低点对轨道的压力为4mg
C.若hA=hB=R,则两小球都能上升到离地高度为R的位置
D.若使小球沿轨道运动并且能从最高点飞出,A小球的最小高度为5R/2,B小球在hB>2R的任何高度均可。