(17分)如图所示,光滑半圆弧轨道半径为r,OA为水平半径,BC为竖直直径。一质量为m 的小物块自A处以某一竖直向下的初速度滑下,进入与C点相切的粗糙水平滑道CM上。在水平滑道上有一轻弹簧,其一端固定在竖直墙上,另一端恰位于滑道的末端C点(此时弹簧处于自然状态)。若物块运动过程中弹簧最大弹性势能为Ep,且物块被弹簧反弹后恰能通过B点。已知物块与水平滑道间的动摩擦因数为μ,重力加速度为g,求:
(1)物块被弹簧反弹后恰能通过B点时的速度大小;
(2)物块离开弹簧刚进入半圆轨道c点时对轨道的压力FN的大小;
(3)物块从A处开始下滑时的初速度大小v0。
(13分)如图所示,板长L=8cm的平行板电容器,板间距为d=4cm,板与水平面夹角α=37°,两板所加电压为U=100 V。有一带负电液滴,带电量为q=4×10-10 C,以v0=1 m/s的水平速度自AB板边缘水平进入电场,在电场中仍沿水平方向并恰好从CD板边缘水平飞出,g取10 m/s2。求:
(1)A、B间匀强电场的场强多大;
(2)液滴的质量;
(3)液滴飞出时的速度大小。
(11分)滑板运动是一项非常刺激的水上运动。研究表明,在进行滑板运动时,水对滑板的作用力FN垂直于板面,大小为,其中v为滑板速率(水可视为静止)。某次运动中,在水平牵引力作用下,当滑板和水面的夹角时,滑板做匀速直线运动,相应的,人和滑板的总质量100kg,试求(重力加速度g取10m/s2,,,忽略空气阻力):
(1)水平牵引力的大小;
(2)滑板的速率;
(3)水平牵引力的功率。
探究学习小组的同学要验证“牛顿第二定律”,他们在实验室组装了一套如图所示的装置,水平轨道上安装两个光电门,小车上固定有力传感器和挡光板,细线一端与力传感器连接另一端跨过定滑轮挂上砝码盘,实验时,调整轨道的倾角正好能平衡小车所受的摩擦力(图中未画出).
(1)由图甲中的刻度尺测得两个光电门中心之间的距离为S,由图乙中的游标卡尺测得遮光条的宽度d=_________cm。
(2)该实验是否________(填”需要”或”不需要”) 满足砝码和砝码盘的总质量远小于小车的质量?
(3)实验获得以下测量数据:小车、力传感器和挡光板的总质量M,挡光板的宽度d,光电门1和2的中心距离为s,某次实验过程:力传感器的读数为F,小车通过光电门1和2的挡光时间分别为t1、t2(小车通过光电门2后,砝码盘才落地),滑块的加速度的表达式a=_________________。(以上表达式均用题中字母表示)已知重力加速度为g,则该实验要验证的式子是______________ 。
某同学在做“研究弹簧的形变量与外力的关系”实验时,将一轻弹簧竖直悬挂并让其自然下垂,测出其自然长度;然后在其下部施加竖直向下的外力F,测出弹簧的总长L,改变外力F的大小,测出几组数据,作出F — L的关系图线,如图所示(实验过程是在弹簧的弹性限度内进行的)。由图可知该弹簧的自然长度为________ cm;该弹簧的劲度系数为________N/m.
下图是一辆连有纸带的小车做匀变速直线运动时,打点计时器所打的纸带的一部分。打点频率为50 Hz,图中A、B、C、D、E、F…是按时间顺序先后确定的计数点(每两个计数点间有四个实验点未画出)。用刻度尺量出AB、DE之间的距离分别是2.40 cm和0.84 cm。
(1)那么小车的加速度大小是________ m/s2 (保留2位有效数字),方向与小车运动的方向相__________。
(2)若当时电网中交变电流的频率变为60Hz,但该同学并不知道,那么做实验的这个同学测得的物体加速度的测量值与实际值相比__________(选填:“偏大”、“偏小”或“不变”)。