图甲所示的“轨道康复者”航天器可在太空中给“垃圾”卫星补充能源,延长卫星的使用寿命。图乙是“轨道康复者”在某次拯救一颗地球同步卫星前,二者在同一平面内沿相同绕行方向绕地球做匀速圆周运动的示意图,此时二者的连线通过地心、轨道半径之比为1:4.若不考虑卫星与“轨道康复者”之间的引力,则下列说法正确的是
A.在图示轨道上,“轨道康复者”的速度大于
B.在图示轨道上,“轨道康复者”的加速度大小是地球同步卫星的4倍
C.在图示轨道上,“轨道康复者”的周期为3h,且从图示位置开始经1.5h与同步卫星的距离最近
D.若要对该同步卫星实施拯救,“轨道康复者”应从图示轨道上加速,然后与同步卫星对接
如图所示,匀强磁场分布在平面直角坐标系的整个第I象限内,磁感应强度为B.方向垂直于纸面向里。一质量为m、电荷量绝对值为、不计重力的粒子,以某速度从点沿着与y轴夹角为的方向进入磁场,运动到A点时,粒子速度沿轴正方向。下列判断正确的是
A.粒子带正电
B.运动过程中,粒子的速度不变
C.粒子由O到A经历的时间为
D.离开第I象限时,粒子的速度方向与轴正方向的夹角为
下列说法正确的是
A.千克、牛顿、库仑均是中学物理中涉及的国际单位制的基本单位
B.质点、点电荷、匀速直线运动均属于理想化物理模型
C.卡文迪许利用扭秤实验测出了静电力常量
D.、、分别是加速度、电场强度、磁感应强度的定义式
(15分)一电路如图所示,电源电动势E=28v,内阻r=2Ω,电阻R1=12Ω,R2=R4=4Ω,R3=8Ω,C为平行板电容器,其电容C=3.0pF,虚线到两极板距离相等,极板长L=0.20m,两极板的间距d=1.0×10-2m.
(1)若开关S处于断开状态,则当其闭合后,求流过R4的总电量为多少?
(2)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取10m/s2)
(15分)如图所示,虚线左侧有一场强为E1=E的匀强电场,在两条平行的虚线MN和PQ之间存在着宽为L、电场强度为E2=2E的匀强电场,在虚线PQ右侧相距也为L处有一与电场E2平行的屏.现将一电子(电荷量e,质量为m)无初速度放入电场E1中的A点,最后打在右侧的屏上,AO连线与屏垂直,垂足为O,求:
(1)电子从释放到打到屏上所用的时间;
(2)电子刚射出电场E2时的速度方向与AO连线夹角的正切值tanθ;
(3)电子打到屏上的点P到O点的距离x.
(15分)如图所示,质量为m的小球沿光滑的水平面冲上一光滑的半圆形轨道,轨道半径为R,小球在轨道最高点对轨道压力等于0.5mg,重力加速度为g,求:
(1)小球在最高点的速度大小;
(2)小球落地时,距最高点的水平位移大小;
(3)小球经过半圆轨道最低点时,对轨道的压力.